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Basic computer skills

• Linux operating system

• some editor; recommended: vi

• Fortran programming

• Some visualization software; recommended: Vsim :
http://www-drfmc.cea.fr/sp2m/LSim/V Sim/index.en.html
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The total energy and its significance
The so-called total energyE is a function that gives the energy of an atomistic
system in terms of its atomic positions. Denoting the atomicpositions of the
system being composed ofNat atoms byRi wherei = 1, ...,Nat our function has
the following form:

E = E(R1, ...,RNat)

The position of thej-th atomR j is a vector of length 3 with thethree com-
ponents(Xj ,Yj ,Z j). Since the electrons are responsible for the interactions
of atoms in condensed matter systems one has to solve in principle the elec-
tronic Schr̈odinger equation to obtainE. The solution of the many-electron
Schroedinger equation gives several sets of correspondingeigenvaluesEi and
eigenvectorsΨi .

HΨi = EiΨi

The eigenvalues have the significance of energies and the eigenvector are the
wavefunctions. The set with the lowest energyE0 corresponds to the elec-
tronic ground state and the other sets to excited electronicstates. The energies
Ei of each set depend on the positions of the atoms since the Hamiltonian is
parametrized by the atomic positions:
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. The various functionsEi(R1, ...,RNat)i are called

Born-Oppenheimer surfaces. The Born-Oppenheimer surfaces of excited elec-
tronic states are only rarely used, for instance in photochemical reactions and
we will therefore in the following only consider the ground state Born-Oppenheimer
surfacesE0 which is also called Potential Energy Surface (PES). For conve-
nience we will also drop the subscript and simply putE = E0.

The exact solution of the many electron Schrödinger equation is numerically
extremely expensive and can only be done for small systems. Even approxima-
tions to the exact Schrödinger equation such as density functional theory are
numerically quite expensive. For this reason we will use in this course the
simplest model for the PES, namely the Lenaard Jones (LJ) potential. The in-
teraction between two LJ atoms is given by

E =V(r) = 4ε
(

(
σ
r
)12− (

σ
r
)6
)

(2)

ε is the depth of the well andσ the distance at which the potential is zero. The
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interaction betweenNat LJ atoms is given by

E = ∑
i< j≤Nat

V(|Ri−R j |) (3)

The Lennard Jones potential (with appropriate valuesε andσ) describes well
the interaction of noble gas atoms, but also some metallic clusters can approxi-
mately be modelled.
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Landmark points of the potential energy surface: Minima and
saddle points
A toy PES: 2 local minima, 1 saddle point
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• global minimum: ground state

• other local minima: metastable states

• one saddle point: transition state
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Significance of Minima
The knowledge of the total energy function allows us to determine the equi-
librium atomic positions. We can calculate the partial derivatives ∂E

∂R j
. This is

a vector of length 3 with the components
(

∂E
∂Xj

, ∂E
∂Yj

, ∂E
∂Z j

)

. The force acting on

atom j, f j , is the negative of this partial derivative.

f j =−
∂E
∂R j

(4)

A stable atomic configuration is by definition a configurationwhere the forces
on the atoms vanishes, i.e where all the partial derivativesof the total energy
with respect to the atomic positions are zero. A equilibriumconfiguration (or
equilibrium geometry) of a molecule corresponds thereforeto a stationary point
of the total energy function. Since the configuration has also to conserve its
stability under small displacements away form the staionary point, the station-
ary point has to be a local minimum of the total energy function. This means
that small displacements away from the stationary point will always lead to
an increase in energy. From a mathematical point of view a local minimum
is characterized by the fact the the curvature along any linegoing through the
local minimum is positive or, equivalently, that the Hessian matrix is positive
definite.
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Let us illustrate the concept by the total energy function ofthe simplest
molecule, namely theH2 molecule. Even though the total energy function is
formally a function of 6 variables, it is clear from physicalconsiderations that
the energy depends only on the distance between the 2 hydrogen atoms. Hence
the total energy can be reduced from a 6 dimensional to a one dimensional
function. The function is sketched below.
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The minimum of the above curve gives obviously the bond length of the hydro-
gen molecule and the depth of the curve its binding energy.
Configurations of more complicated molecules can in principle be obtained in
the same way, namely by finding local minima of the total energy. Numerical
methods that allow us to find local minima of high dimensionalfunctions will
be discussed later.
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Realistic PESs have an important difference from the simpleones discussed up
to now. The number of minima is in general huge. As a matter of fact, the
number of local minima increases exponentially with respect to the number of
atoms om the system. This can easily be seen for some simple model system
such as alkanes or bulk silicon.

First example: alkane family,CnH2n+2: O(3n) local minima

0 2 π

E
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Second example: bulk silicon: O(3n) local minima

Wooten-Winer-Weaire process:
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Visualizing the potential energy surface
Visualizing the entire PES is in general impossible due to its high dimensional-
ity. Below is an heroic effort for the highest possible dimension!

from: S. Chan and K. Dill, Proteins: Structure, Function, and Genetics,30, 2 (1998)
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Funnels are typically associated to structural motifs

4 x 4 x 4 funnel 3 x 5 x 4 funnel
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Disconnectivity graphs
So-called disconnectivity graphs are probably the best wayto visualize PESs.
The height of each leave gives the energy of a local minimum. The highest
point of the lines connecting different leaves gives the height of the barrier that
has to be overcome on the PES when crossing from one minimum tothe other
one. The appearance of such a disconnectivity graph allows to detect easily
the character of a PES. The disconnectivity graph on the right hand side below
corresponds to a single funnel system that can easily find itsground state (global
minimum), whereas the graph on the left hand side corresponds to a two funnel
system.
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Minimization without gradient: The downhill simplex metho d

The Downhill simplex method of
Nelder and Mead is an extremely
simple and stable method to min-
imize a function if no derivatives
are available. It requires as an ini-
tial input a simplex in theN di-
mensional space together with the
functional values on the corner of
this simplex. A simplex in anN
dimensional space hasN + 1 cor-
ners. A simplex in two dimensions
is a triangle, in three dimensions an,
in general, not regular tedrahedron.
During the minimization this sim-
plex undergoes a series of transfor-
mation shown in the Figure to the
right. Im most transformations the
corner with the highest functional
value is moved.

0-13



The simplex is able to adapt to the topology of the function tobe minimized. In
a strechted valey for instance it becomes also elongated. Nevertheless its con-
vergence rate is typically much lower than for the methods exploiting gradient
information. Like all methods which do not stop based on gradient threshold
norm, the downhill simplex method can get stuck even though it has not yet
reached a local minimum. Therefore it is recommended to do some restarts
with different initial simplexes, before claiming to have found the minimum. A
movie showing the behaviour of the simplex during a minimization is available
at: http://optlab-server.sce.carleton.ca/POAnimations2007/NonLinear7.html.
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Minimizing a continuous 1-dim function
Minimizing a smooth functionE(x) is considerably easier than minimizing a
non-smooth or even discontinuous function. If the first derivative exists, it
points in the direction of the strongest increase of the function. The opposite di-
rection consequently gives the strongest decrease of the function. The so-called
steepest descent iteration

xl+1 = xl −α E′(xl ) (5)

will therefore converge to the minimumE(xM) of the functionE if the step size
α is sufficiently small. Ifα is too large the iteration will diverge.

Next, we will discuss the case where the second derivative exists as well.
Using in a combined way the information on the first and secondderivative
gives the most efficient minimization algorithms. The information about even
higher derivatives is typically not used since this would betoo complicated.
Consequently we can assume in our discussion of minimization algorithms that
we have to minimize a quadratic function. Then we can do a Taylor expansion
of the functionf and its derivative around an arbitrary point ˜x

E(x) = E(x̃)+(x− x̃)E′(x̃)+
1
2
(x− x̃)2 E′′

E′(x) = E′(x̃)+(x− x̃)E′′ (6)
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The stationary pointx= xM where the derivative vanishes can easily be obtained
by solving Eq. 6.

xM = x̃−E′(x̃)/E′′ (7)

We assume it is a minimum (i.e.E′′ > 0) and not a maximum. Eq. 7 gives rise
to the Newton iteration

xl+1 = xl −E′(xl )/E′′ (8)

The iteration of Eq. 8 will obviously converge in a single step for a quadratic
function, but several iterations are needed for a general function. In the case
of a quadratic function we did not have to worry where to evaluate the second
derivative since it was a constant. This is of course not any more true for a
general function. As a matter of fact we see that for the one-dimensional case
we are discussing, Eq. 5 and Eq. 8 are identical if we putα = 1/E′′. Therefore
one best adopts for the one-dimensional case the point of view that we just do
steepest descent iterations whereα is of the order of 1/E′′, but small enough to
ensure convergence. In this case we do not have to answer the question where
to evaluateE′′.
Exercise: Minimize the function describing the LJ potential (Eq. 2) numerically
using Eq. 5. For which starting values does the iteration of Eq. 8 diverge if we
evaluate E′′ at xl
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Minimizing continuous many-dimensional functions
The basic concepts of the 1-dimensional case can be carried over into the many
dimensional case. The steepest descent iteration becomes

~xl+1 =~xl −α~g(~xl ) (9)

where~g(~x) = ∇E(~x) is the gradient of the functionE. As in the 1-dim case this
will converge to a minimum ifα is sufficiently small.
For a function where the second derivatives exist we can again do a Taylor
expansion

E(~x) = E(~̃x)+(~x−~̃x)T~g(~̃x)+
1
2
(~x−~̃x)T A(~x−~̃x) (10)

~g(~x) = ~g(~̃x)+A(~x−~̃x) (11)

whereA is the Hessian matrix

A(i, j) =
∂

∂x(i)
∂

∂x( j)
E(~x) (12)

For a quadratic form the Hessian matrix would not depend on the evaluation
point, for a general function it of course does and the problem where to evaluate
it will be postponed. Solving Eq. 11 for~x leads to the Newton iteration

~xl+1 =~xl −A−1~g(~xl ) =~xl −~pl (13)
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Note that we have to solve in each iteration of the Newton method a linear
system of equations for the preconditioned gradient vectorp

A~p=~g (14)

There are several basic problems with the Newton iteration:
• As mentioned before, it is not clear where to evaluate it for anon-quadratic

form
• Realistic functions are not quadratic forms and so the theory is anyway

only an approximation.
• The calculation of the exact Hessian matrix is numerically too expensive

for complicated high-dimensional functions
• The matrix inversion of Eq. 14 is too expensive for high-dimensional

functions.
Let us therefore define a slightly more general iteration that we will call pre-
conditioned steepest descent iteration

~xl+1 =~xl −P~g(~xl ) (15)

whereP is a still unspecified preconditioning matrix. Evidently weget the
steepest descent iteration of Eq. 9 if we putP = αI and we get the Newton
iteration of Eq. 13 if we putP= A−1
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Convergence analysis of the steepest descent iteration
For the convergence analysis we will again assume that we arealready suffi-
ciently close to the minimum, so that the function is a quadratic form. Because
by definition the gradient vanishes atxM the Taylor expansion of Eq. 10 be-
comes

E(~x)−E(~xM) =
1
2
(~x−~xM)T A(~x−~xM)

By shifting the origin (such that~xM = 0) and the function (such thatE(~xM) = 0)
we can without any restriction consider the simpler case

E(~x) =
1
2
~xT A~x (16)

Since the HessianA is a positive definite symmetric matrix, we can go into an
coordinate system~y, that is obtained by applying a unitary transformationU
on the original coordinate system~x, whereA becomes a positive real diagonal
matrix D =UTAU.

f (~y) =
1
2 ∑

k

D(k,k)y(k)2 ; g(k) = D(k,k)y(k) (17)

Things are illustrated in the figure below. The ellipsoids represent the equipo-
tential lines of the functionf . The axis of they coordinate system coincide with
the principal axis of the ellipsoids.
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Let us now assume that at a certain stage of a steepest descentiteration the
current point~xl coincides with the blue dot. Since in this case the gradient
points exactly in the direction of the minimum, we can find theminimum of
this one-dimensional subproblem with a single steepest descent step if we chose
α = 1/D(1,1). If we are at the green dot the same arguments apply except that
now α = 1/D(2,2). In general our current iterations points are not located on
any principle axis. The gradient of an arbitrary point such as the red dot has
components of both principal axis. In order to guarantee convergence we have
to be conservative and to chooseα = 1/max[D(1,1),D(2,2)]. Since the com-
ponents of the gradient that correspond to principal axis with small eigenvalues
will be damped too strongly, a steepest descent iteration inmore than two di-
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mensions is approaching the minimum very slowly by a large number of zigzag
moves.
The generalization to more than 2 dimensions is obvious. Theα of a steepest
descent iteration has to be taken to be the reciprocal of the largest eigenvalue of
the Hessian. Let us now examine the convergence rate for the multi-dimensional
case in a more mathematical way. Since the steepest descent iteration is in-
variant under unitary transformations of the coordinate system we can without
restriction consider a diagonal Hessian.
The steepest descent iteration then becomes

xl+1(k) = xl (k)−αd(k)xl (k)

whered(k) is the vector containing the diagonal elements of the diagonal matrix
A. Hence

xl+1(k) = x1(k)(1−αd(k))l

where~x1 is the starting vector for the iteration. Convergence can only be ob-
tained if|1−αd(k)|< 1. Henceα can be at most twice of the reciprocal of the
largest eigenvalue. So let us put

α = t/dmax (18)

wheret is in between 0 and 2. Fort = 1, the componentk that will converge
most slowly is the one associated to the smallest eigenvalue. Requiring this
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component to be equal to a certain precisionp gives

(1− t
dmin

dmax
)l = p

The number of iterationsl necessary to obtain this precisionp is then given by

l = ln(p)/ ln(1− t
dmin

dmax
) (19)

If dmin
dmax

is small, this is asymptotically equal to

l =− ln(p)
dmax

t dmin
∝ κ (20)

The ratio between the largest and the smallest eigenvalue ofthe Hessian matrix
is called the condition numberκ= dmax

dmin
. We have thus the result that the number

of iterations is proportional to the condition numberκ in the steepest descent
method. This is a big problem. As we will see the conditioningnumber is typi-
cally growing rapidly with respect to the size of the physical system represented
by the matrix. Hence the number of iterations is growing substantially as well.
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Convergence analysis of the preconditioned steepest descent
iteration
The convergence analysis of the preconditioned steepest descent iteration of
Eq. 15 is analogous to the one for the simple steepest descentiteration. The
only difference is that we perform the analysis in a coordinate system that di-
agonalizesPA instead ofA. The number of iterations is consequently given by
the same formula

l =− ln(p)
dmax

t dmin

the only difference being thatdmax anddmin are now the largest and smallest
eigenvalues ofPA. If the conditioning number ofPA is smaller than ofA, the
number of iterations of the preconditioned steepest descent method will be re-
duced compared to the simple steepest descent method. A goodpreconditioning
matrix is a compromise between 2 requirements. On the one hand it should give
a small condition number, on the other hand it should be easy to calculate and
to apply to the gradient. A frequent choice forP is a diagonal or sparse matrix.

Topology of preconditioned problem:
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Steepest descent with line minimization

The prescription for a steepest descent iteration with lineminimization for a
functionE is formally identical to an ordinary steepest descent minimization

~xl+1 =~xl −α~g

The difference is thatα is not fixed, but optimized such that

∂
∂α

E(~x+α~g) = 0

The line minimization ensures that the function will decrease at each iteration
point. This does however not imply that one comes as close as possible to the
minimum. As a matter of fact it turns out that with an optimal value oft (Eq.18)
the convergence is as fast as with line minimization. In addition one iteration is
much cheaper without the line minimization. The conclusionis that one should
avoid line minimizations unless one can not at all estimate the largest eigenvalue
of the Hessian matrix. If this estimation is possible steepest descent with some
feedback is a recommendable strategy.
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Steepest descent with energy feedback

A simple and powerful modification of the simple steepest descent method is
the steepest descent with energy feedback. Assuming that the functional value
represents the energy, we decrease the step sizeα if the energy rises in an it-
eration, otherwise we increase it. Since we know that in the case of an energy
increase the parametert (Eq.18) is roughly twice as large as would be optimal
for the elimination of the stiff components, associated to large eigenvalues of
the Hessian, we decreaseα by a factor of 1/2. If the energy goes down, as it
should, we slightly increaseα (e.g. by a factor of 1.05) to speed up the conver-
gence.

Steepest descent with gradient feedback

In practice one finds that the following feedback gives slightly faster conver-
gence than the energy feedback. At each iteration one calculates the angle be-
tween the current gradient vector and the gradient vector from the previous
iteration. If the angle is larger than let’s say 60 degrees, the step sizeα is de-
creased by a factor of 1/2, otherwise it is increased by 1.05. In this way one
avoids that consecutive gradients are pointing in oppositedirections, which is
obviously not desirable for a fast convergence.
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Exercise: An Lennard-Jones cluster is some artificial system where the’atoms’
interact through the Lennard-Jones potential. The potential energy E of such a
cluster is

E = ∑
i=1,Nat

∑
j=1,i−1

4

(

1
|Ri−R j |12−

1
|Ri−R j |6

)

Equilibrium geometries are given by minima of the potentialenergy. Minimize
the energy to find an equilibrium geometry using the steepestdescent method
with energy and gradient feedback.α will turn out to be of the order of 1.d-
3. Which method is more efficient? The subroutine lenjon.f90(available on
http:/comphys.unibas.ch/teaching.htm) can be used to calculate the energy and
forces (= negative gradient) of a Lennard-Jones cluster andthe file posinp.xyz
(on same website) contains the coordinates of the lowest energy cluster contain-
ing 38 atoms. Displace the atoms slightlyfrom the geometry given in this file
and use either one of the above mentioned minimization methods. Of course,
one should in this way regain the coordinates of the cluster in the file posinp.xyz.
If the atoms are stronglydisplaced one might however fall into another local
minimum. The format of the file posinp.xyz is by most visualization programs
such as vsim software provided at http://www-drfmc.cea.fr/LSim/VSim/ The
first line gives the number of atoms, the second is empty and the remaining lines
give the atom type followed by its x,y and z coordinates.
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The conjugate gradient (CG) method
Eq. 11 tells us that finding the minimum of a quadratic form is equivalent to
solving a linear system. The (preconditioned) steepest descent method can
therefore be considered as the simplest method for solving alinear system of
equations. There are however more powerful methods. One of the most pop-
ular methods is the conjugate gradient method. It is based ona bi-orthogonal
sequence~gi ,~hi

~gT
i ~g j = ∑

k

gi(k)g j(k) = δi, j

~hT
i A~h j = ∑

k,l

hi(k)A(k, l)h j(l) = δi, j

Solving the system of equations

A~x=~y

is easy in the space spanned byhi ’s. Writing~x= ∑ j c j~h j one obtains

∑
j

c jA~h j =~y

Multiplying from the left by~hi one obtains

∑
j

c j~h
T
i A~h j = ci =~hT

i ~y
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In implementations of the conjugate gradient method one is simultaneously
generating the bi-orthogonal sequence and then updating the approximate so-
lution~x. For am dimensional matrix there are at mostm non-zero vectors~hi .
Therefore the exact solution has to be found after at mostm iterations. This
property is sometimes stressed in mathematics books. It is however not the
property that makes conjugate gradient so useful in practice because

• It only holds for linear systems, whereas in practice the conjugate gradi-
ent method is usually applied for minimization problems where the func-
tion is not a quadratic form.

• Even for linear systems, it is violated in finite precision arithmetic be-
cause of rounding errors

• m iterations are far too expensive for large matrices

What makes the conjugate gradient method superior to the steepest descent
method is its faster convergence rate. It can be shown that the number of it-
erationsl is

l ∝
√

κ

instead of Eq. 20. For badly conditioned systems a lot can thus be gained by
using the conjugate gradient instead of the steepest descent method, for well
conditioned (or preconditioned) systems not much can be gained.

0-28



Generation of bi-orthogonal sequence
Here is the conjugate gradient formulation for the minimization of an arbitrary
functionE. Given an initial input guessx0 we calculate~g0 = ∇E(~x0) and put
~h0 =~g0.
Consecutive stepsl :

• Determine by a line minimization theαl that gives the lowest energy.
That is usually done by finding the point where the derivativevanishes.

∂
∂αl

E(~xl +αl~hl ) = 0

• Update the solution
~xl+1 =~xl +αl~hl

• Calculate new gradient

~gl+1 = ∇E(~xl+1)

• Calculate new~h
~hl+1 =~gl+1+ γ~hl
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where (Polak Ribiere)

γ =
(~gl+1−~gl )

T~gl+1

~gT
l ~gl

For the case of a quadratic function one could simplify the Polak Ribiere for-
mula by using the orthogonality of the vectors~gl . However it turns out that
for a general function where the orthogonality of the vectors~gl is not any more
satisfied, the above Polak Ribiere formula is more stable.

CG assumes that we are in a quadratic region. This is frequently not the case
at the start of a minimization procedure. In this case steepest descent with
feedback is the method of choice. The CG will usually divergein a strongly
non-quadratic region.

0-30



The Newton method
Even though the Newton method is not widely used for finding minima we will
discuss it in more detail since its practical implementation is very similar to the
very useful preconditioned steepest descent iteration. Solet us assume that we
know the Hessian matrixA(x) at a pointx together with the forcef(x). We can
diagonalize this Hessian matrix to obtain its eigenvaluesλi and eigenvectors
vi using standard routines such as the routine DSYEV from LAPACK. This
routine overwrites the orginal matrix with all the eigenvectors. Each column
of the matrix contains one eigenvector. The eigenvalues andthe corresponding
eigenvectors are in increasing order. We have now to transform the force in the
new coordinate system spanned by the orthogonal set of eigenvectors. For this
we have to calculate the coefficientsgi

gi = 〈f|vi〉= ∑
j

f ( j)vi( j)

where f ( j) is the j-th component off andvi( j) the j-th component ofvi . gi is
the i-th component of the force vector in the new coordinate system. Since we
are now in the principal axis coordinate system we can multiply each compo-
nent by the ideal stepsize which is the inverse curvature. Since the curvature is
given by the eigenvalues we have

ĝi = gi/λi (21)
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Then we have to go back in our original coordinate system to get the precon-
ditioned forcef̂. The vector̂f is what one would obtain by applyingA−1 to
f:

f̂ = ∑
i

ĝi vi (22)

Finally we update the atomic positions according to

R← R+ f̂

Since the energy is invariant under translations, the Hessian matrix has three
eigenvectors with zero eigenvalues and is thus singular. HenceA−1 does not
exist. Numerically the eigenvalues are not strictly zero but very small. These
nearly zero eigenvalues can lead to problem in Eq. 21. Unlessthe system is in
the field of an external potential the overall translationalforce has to be zero
and so the three componentsg(i) that correspond to the translations have to be
zero. Analytically we have thus three cases in Eq. 21 where zero is divided
by zero, in numerical work we will just divide two very small numbers. Since
these numbers are essentially rounding noise the result would be completely
wrong. For a molecule at equilibrium it can be shown that there are three more
zero eigenvalues that correspond to rotations. If the molecule is close to a local
minimum the three eigenvalues are not exactly zero but very small which will
lead as well to numerical problems. To avoid such problems wehave to modify
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Eq. 21 to

ĝi =
gi

λi + γ
(23)

and this value of ˆg(i) has then to be used in Eq. 22.γ has to be chosen such that
the denominator is always positive and not too small. In the case of a molecule
or cluster, a good choice forγ is to set it equal to half of the 7-th eigenvalue.

The practical implementation of the Newton method is very similar to the
preconditioned steepest descent iteration. The main difference is that in the pre-
conditioned steepest descent method one uses an approximate Hessian instead
of the exact Hessian. Approximate Hessians can also have zero eigenvalues
which have te be treated in a similar manner as in the Newton method.

Exercise: Use the Newton method to find equilibrium geometries of the 38
atom LJ cluster of the previous exercise. Show that the convergence rate is much
faster than with the steepest descent method. A routine hesslj.f90 that calculates
the Hessian matris is available on http:/comphys.unibas.ch/teaching.htm.
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Quasi Newton (QN) methods

The basic principle of quasi Newton methods is to build up information about
the Hessian matrix from the gradient evaluations during theminimization iter-
ations. This is possible because the Hessian matrix (Eq. 12)can be obtained by
finite differences from the forces or gradients

A(R) =





. . ... .
g(R+he1)−g(R)

h ; g(R+he2)−g(R)
h ; ... ; g(R+hen)−g(R)

h
. . ... .





Denoting byGi the finite difference vector between the two gradients
Gi = g(R+hei)−g(R) we see that the matrix elementAi, j is given by the scalar
product 1

h〈Gi |ej〉, whereei is an orthonormal set of vectors. Now very similar
quantities are a by-product of any minimization. If the system is moved in a
minimization step fromR to R+d and the forces are evaluated at both points
we can calculate the curvature along the directiondi .

∂2

∂x2 E(R+xd)|x=0 =
∂
∂x
〈g(R+xd)|d〉|x=0≈

〈G(d)|d〉
〈d|d〉

where we have again denoted byG the difference betwenn the gradient vectors
G(d) = g(R+d)−g(R). If we assume our functionE to be a perfect quadratic
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form thenG(d) is equal toAd. The Hessian matrixB with respect to an non-
orthogonal set of vectorsdi is then given by

Bi, j = 〈di |A|d j〉= 〈G(di)|d j〉

The eigenvalues of the HessianA can consequently be obtained by solving the
generalized eigenvalue problem for the matricesB andS

Bvl = λl Svl (24)

whereS is the overlap matrixSi, j = 〈di |d j〉. This approach clearly fails if the
vectorsdi are linearly dependent. Numerical problems actually already arise if
the vectorsdi are nearly linearly dependent, i.e if the overlap matrix is nearly
singular, which can be detected by very small eigenvalues ofthe overlap matrix.
Standard Quasi Newton methods such as the popular BFGS variant, named after
their inventors Broydens, Fletcher, Goldfarb and Shanno, can therefore fail in
such cases. Linearly dependent vectors can be encountered if the minimization
is started far away from the local minimum. If the minimiztion starts close to
the local minimum where the function can be well approximated by a quadratic
form such problems do generally not arise and rapid convergence is generally
found. The most popular implementation of the BFGS method isthe Limited
memory LBFGS variant where second derivative information is exploited only
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from the few last iterations. Typically a history length of about 10 is choosen.
Even if the dimension of the entire Hessian matrix is in general much larger
than this history length, it turns out that the convergence speed is not improved
by a longer history. On the contrary, a too long history can lead to numerical
instabilities.
Exercise: Extracting curvature information from a set of gradient vectors
Take the local minimumR0 of the 38 atom LJ cluster of the previous exercise
and calculate the Hessian matrix at this point using the subroutine hesslj.f90 (on
web site http:/comphys.unibas.ch/teaching.htm). Find the eigenvalues of this
matrix by using the LAPACK routine DSYEV. Six of these eigenvalues should be
zero corresponding to the three translations and the three rotations that leave
the energy invariant. These eigenvalues will serve as reference values for the
second part of this exercise.

In this second part, first perturb this minimum by a random displacement

r0 = R0+aØ

whereØ is a random vector and the amplitude a should be about 1.e-2. Gen-
erate then a sequence of configurationsr i , i = 1, ...,n, by performing a steepest
descent geometry optimization with a energy or gradient feedback. Consider
then the sequence of displacement vectorsdi

di = r i− r i−1
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Use at each configurationr i the corresponding forcef i to obtain the gradient
differenceGi

Gi =−(f i− f i−1)

Calculate then the overlap matrix Si, j = 〈di |d j〉 and the Hessian matrix in this
basis, Bi, j = 〈Gi |d j〉 for several values of n. For a purely quadratic form the
Hessian matrix B would be symmetric, i.e Bi, j = B j,i . Since this is not the
case there will be small deviations from symmetry. Check that these deviations
get smaller if the initial displacement amplitude is reduced. Next calculate
the eigenvalues of the generalized eigenvalue problem of Eq. 24 by using the
Lapack routine DSYGV. Verify that you get for small values ofn already with
reasonable precision the large eigenvalues of the full Hession matrix and that
all the eigenvalues lie within the spectrum of the full Hessian matrix. Verify that
once n gets larger numerical instabilities arise which prevent obtaining all the
3×38eigenvalues of the full Hessian matrix correctly.
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The DIIS (Direct Inversion in Iterative Subspace)
minimization method

Be~c0 the exact solution of a quadratic minimization problem and~ci (i=1, ..,m)
a set ofm approximate solution vectors. Their error vectors are defined by

~em =~cm−~c0

We form a new vector̃~cm

~̃cm =
m

∑
i=1

di~ci

If ~̃cm was the exact solution, it would fulfill

m

∑
i=1

di~ci = ~c0

m

∑
i=1

di(~c0+~ei) = ~c0

m

∑
i=1

di~c0+
m

∑
i=1

di~ei = ~c0
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This is satisfied if
m

∑
i=1

di = 1 ;
m

∑
i=1

di~ei = 0

Last condition can only be fulfilled approximately, leadingto the minimization
problem

min

[

〈
m

∑
i=1

diei |
m

∑
i=1

diei〉
]

under the constraint∑m
i=1 di = 1. This leads to the system of equations













〈e1|e1〉 〈e1|e2〉 ... 〈e1|em〉 1
〈e2|e1〉 〈e2|e2〉 ... 〈e2|em〉 1
... ... ... ... .

〈em|e1〉 〈em|e2〉 ... 〈em|em〉 1
1 1 ... 1 0

























d1

d2

.
dm

dm+1













=













0
0
0
0
1













(25)

In practice the error vectors are approximated by~ei = P~gi

The new vector is then given by

~̃gm = ∇ f (~̃cm)

~cm+1 = ~̃cm−P~̃gm
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Variable preconditioning DIIS implementation

There are possibly two preconditioning matricesP=Pm andP̃= P̃m that depend
on the iteration stepm.
At the m-th step do•

~gm = ∇ f (~cm)•
~ei = Pm~gi , i = 1, ...,m

• Solve Eq. 25 to get̃~cm = ∑m
i=1 di~ci Under the assumption that we are in a

quadratic region, the coefficientsdi allow us then also to calculate

~̃gm = ∇ f (~̃cm) = ∇ f (
m

∑
i=1

di~ci) =
m

∑
i=1

di∇ f (~ci) =
m

∑
i=1

di~gi

•
~cm+1 = ~̃cm− P̃m~̃gm

This implementation requires to store 3 sequences of vectors:~ci ,~gi and~ei . If the
application of the preconditioning matrixPm is cheap the~ei ’s can be calculated
on the fly form the~gi ’s and one does not have to store them. The most expensive
step is usually the calculation of the gradient~gm, which has to be done once
during each iteration.
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Fixed preconditioning DIIS implementation

Only the two sequences~cm and~em have to be stored if there is a single precon-
ditioning matrixP that does not change during the iterations.
•

~gm = ∇ f (~cm)•
~em = P~gm

• Solve Eq. 25 to get̃~cm = ∑m
i=1 di~ci Under the assumption that we are in a

quadratic region, the coefficientsdi would allow us then also to calculate
~̃gm, even though we do not actually calculate it

~̃gm = ∇ f (~̃cm) = ∇ f (
m

∑
i=1

di~ci) =
m

∑
i=1

di∇ f (~ci) =
m

∑
i=1

di~gi

•

~cm+1 = ~̃cm−P~̃gm =
m

∑
i=1

di~ci−P
m

∑
i=1

di~gi =
m

∑
i=1

di(~ci−P~gi) =
m

∑
i=1

di(~ci−~ei)
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Steepest descent versus CG, QN and CG

Both CG, QN and DIIS assume that we are in a quadratic region. This is
frequently not the case at the start of a minimization procedure. In this case
steepest descent with feedback is the method of choice. BothCG QN and DIIS
will usually diverge in a strongly non-quadratic region. The line minimization
makes the CG however somewhat more stable than DIIS.

QN and DIIS versus CG

The DIIS method has the advantage that it is the most flexible.Even though
there is also a preconditioned version of the CG method thereis no precon-
ditioned CG method that would allow for variable preconditioning. An initial
Hessian which can be considered as a preconditioner can alsobe provided in
the QN methods. However if this Hessian turns out to be inadequate the iter-
ations done so far have to be discarded for building up information about the
Hessian. Since the set of approximate solution vectors~cm in the DIIS method
is arbitrary, the the DIIS method can be applied to a constrained minimization
problem. Imposing constraints after each iteration modifies the sequence of
approximate solution vectors generated during the iterations and would be il-
legal in the standard CG and QN method. In the DIIS method imposing the
constraints does not bother. The disadvantage of the DIIS method compared to
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the CG method is that it needs more memory to hold the set of vectors~ci and
~ei . If memory is limited, the sequence of vectors can be restricted to a certain
maximum value. Like in the QN methods such a limited history length does not
negatively affect the performance. Another advantage of both the QN and the
DIIS method is that it requires only a single force evaluation per step because
no line minimization is required.
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Least square problems: The Levenberg Marquart method
In the case of a least square fitting problem, the Hessian nearto the solution can
be obtained easily from the gradient vectors as will be shownin the below. The
only reason not to use information about the Hessian would bethat one is still
far away from a quadratic region, where some steepest descent type method is
more stable.
The penalty functionχ to be minimized is by definition given by

χ2(a) =
N

∑
i=1

(

yi−y(xi ;a)
σi

)2

for a nonlinear fiting problem.a is a vector of lengthM containing the fitting
parameters of the functiony to be optimized and theN data of the fitting data
base are denoted by(xi ,yi). The gradient is given by

gk =
∂χ2

∂ak
=−2

N

∑
i=1

yi −y(xi ;a)
σ2

i

∂y(xi ;a)
∂ak

and the Hessian is given by

∂2χ2

∂ak∂al
=−2

N

∑
i=1

1

σ2
i

(

∂y(xi ;a)
∂ak

∂y(xi ;a)
∂al

− (yi−y(xi ;a))
∂2y(xi ;a)

∂ak∂al

)
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If the fit succeeds to reproduce the data perfectly,yi −y(xi ;a) tends to zero and
the second term in the formula for the Hessian vanishes. Hence the Hessian can
be obtained purely from gradient information.
In the Levenberg-Marquart method one uses now a preconditioning matrix which
is given by

Pk,l =−2
N

∑
i=1

1

σ2
i

∂y(xi ;a)
∂ak

∂y(xi ;a)
∂al

+λδk,l

If λ is zero the resulting iterationa← a−Pg will be identical to a Newton
iteration close to a perfect fitting solution. For very largevalues ofλ the the
iteration will coincide with a steepest descent iteration with a very small step
size of approximately 1/λ. In the Levenberg-Marquart the value ofλ is adjusted
by a feedback loop to be close to optimal. One starts with a rather large value
of λ such that the first steps are steepest descent like. Then the value of λ
is reduced to come closer to the more efficient Newton iteration. If the λ is
however too small large steps can be taken and these steps might not be correct
because the preconditioning matrixP is not the exact Hessian. In this case the
valueχ2 will increase and then a feedback mechanism will again increase the
values ofλ. This is very similar to the steepest descent iteration withenergy
feedback that was discussed previously.
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Saddle points

In addition to the local minima of the total energy function the saddle points are
also of interest. Their height and shape determines the dynamics of a molec-
ular system. Within harmonic transition state theory one can obtain the rate
of a chemical reaction from the properties of the saddle point. Let us look at
the simplest chemical reaction,H +H2→ H2 +H, whose energy function is
sketched below as a function of the two distances between thehydrogen atoms.
We assume that the 3 atoms all move along a line.
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In realistic cases the total energy function is a very high dimensional function
that can not be visualized. For this reason one introduces the so-called reaction
coordinate and plots the energy as a function of this reaction coordinate.
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The reaction coordinate consists of the two path that one obtains if one starts a
steepest descent minimization from the saddle point going slightly in the direc-
tion of the two minima connected by the saddle point. Even though the transi-
tion is a saddle point on the high dimensional total energy surface it becomes
a maximum along the reaction coordinate. The height of the barrier measured
relative to the educt is called the activation energy. We have plotted the energy
along the reaction coordinate and so the barrier height is anenergy difference.
In reality one should consider the free energy and in transitions state theory
the activation energy is actually a free energy. In most cases the pure energy
contributions are however more important than the entropy contributions.
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Rare events
Since the time step in MD is very small it is not possible to follow events that
take place on time scales of a micro second or more. Events that take place
very rarely on the time scale of molecular vibrations are called rare events.
Doing MD to observe such a rare event would be boring. Essentially one would
observe endless oscillations around a certain local minimum of the total energy
surface until all of a sudden the event takes place. When the event ’takes place’
the MD trajectory goes over a barrier into the bassin associated to another local
minimum. In the language of chemistry such an event is usually a chemical
reaction. The initial minimum corresponds to the educt of the chemical reaction
and the final local minimum to the product of the chemical reaction. In physics
such an event could for instance be the annihilation of a defect in a crystal. The
initial local minimum corresponds to a crystal containing astable defect and
the final local minimum to the perfect crystal. What one wouldlike to know
for rare events is how frequently they happen on average. Letus denote this
average time byτ. In this way one knows for instance the rate konstantk of a
chemical reaction which is simply 1/τ. Harmonic transition state theory gives
an approximate formula fork

k=
kBT
~

exp(
Ea

kBT
) (26)

wherekB is Boltzmann’s constant,~ Plank’s constant,Ea the activation energy.
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Finding saddle points

Finding saddle points is more difficult than finding minima. In the latter case
one just has to go downhill whereas in the former case one has to go downhill
along certain directions but uphill along other directions. The direction along
which one has to go uphill is the direction with negative curvature. Determining
this direction requires finding the eigenvector of the Hessian matrix that has a
negative eigenvalue. Calculating the Hessian matrix is typically rather difficult.
Except for simple model potentials such as the LJ potential it can not be cal-
culated analytically but only numerically at rather high cost of computer time.
For the moment let us assume that the Hessian matrix is available.

The topology of a saddle point of a 2-dim function is shown on the next
side. The surface is already aligned such that the prinipal axis coincide with
the x and y axis. Along the x axis the curvature is 1, along the yaxis it is -1/2.
The left hand side of the figure shows both the surface and the contour lines
in the x y plane. The right hand side shows only the contour lines together
with the force (black arrow) at a certain iteration of our saddle point search. As
expected the force does not point in the direction of the saddle point. Like in the
case of Newton’s method we have to decompose the force into its components
along the principal axis (dotted arrays). The component along the component
with eigenvector 1 is not modified since the optimal step sizefor curvature 1
is 1. The component along the eigenvector with eigenvalue -1/2 is multiplied

0-49



by -2. The negative sign comes from fact that we want to go uphill along this
component and the value of two from the fact that the absolutevalue of the
curvature is 1/2. Adding together the scaled components gives an vector (red
arrow) that points towards the saddle point.
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The obvious generalization to higher dimensional problemsis the following.
To find a first order saddle point, i.e a saddle point where one eigenvalue of the
Hessian is negative and all other are positive we have to firstdecompose the
force f into the componentsci of eigenvectors of the hessian matrix. Denoting
the eigenvectors byvi we have

ci = 〈f|vi〉= ∑
j

f ( j)vi( j)

Then we have to scale each component by the curvature taking into account that
we want to go downhill except along the component with the smallest curvature.
This is achieved by scaling the first component as

d1 =−c1/|λ1| (27)

and all other component as
di = ci/|λi | (28)

Close to a first order saddle point there will always be one negative eigenvalue.
Far away all eigenvalues may however be positive. Taking theabsolute value of
λ1 in Eq. 27 ensures that one also moves uphill along one mode if all eigenval-
ues are positive.

In the case of finding saddle points we encounter the same problem as in
the case of finding minima with the Newton method. Translation and rotational
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modes have eigenvalues that are zero or close to zero. In addition some modes
can be close to zero ’by accident’ if an eigenvalue changes sign during the
saddle point search. Analogeous to the case of the Newton minimization we
therefore have to modify again Eq. 27 and Eq. 28:

d1 =−
c1

|λ1|+ γ
(29)

and all other component as

di =
ci

|λi |+ γ
(30)

After having scaled the different components we have to assemble the precon-
ditioned force vector̂f (shown by the red arrow in the above figure)

f̂ = ∑
i

divi

Finally the atoms are moved according to

Ri ← Ri + f̂

Iterating the above described steps leads into the saddle point.
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Exercise: Saddle points in the LJ 38 cluster
Implement a subroutine that finds local minima by using the Newton method.
A subroutine hesslj.f90 that returns the Hessian matrix forLJ systems can be
downloaded from http:/comphys.unibas.ch/teaching.htm.To diagonalize the
Hessian matrix use the DSYEV routine from the Lapack library. To test your im-
plementation of the Newton method take the global minimum found previously
and displace the atoms randomly by .1 units. The convergencerate should be
considerably faster than with the steepest descent method.
Using as a starting point the Newton geometry optimization routine, write next
a routine that can find saddle points. Use this routine then tofind several sad-
dle points that lead away from the global minimum. Save in addition to the
coordinates of the saddle pointRsaddlethe direction along which the curvature
is negativeDneg which is the eigenvector belonging to the negative eigenvalue.
Plot the energy along this direction, i.e. plot the function

f (s) = E(Rsaddle+sDneg)

For each of the saddle points found, determine next which 2 minima it connects.
To do this use the two pointsRsaddle±s0Dneg as a starting point for a steepest
descent geometry optimisation. Finally collect all the results to plot the energy
along the reaction coordinate.

0-53



Finding negative curvature modes without diagonalizing the
Hessian matrix
The method to locate saddle points presented in the previoussection is concep-
tually simple and efficient in the sense that only a relatively small number of
number of iterations steps is needed to find the saddle point.One single itera-
tion step is however in practice typically too expensive since the calculation of
the Hessian matrix is required. If finite differences are used at least 6Nat force
evaluations are required to calculate the Hessian matrix. Other approaches that
are applicable on the density functionla level require a similar numerical ef-
fort. Fortunatley the eigenmode with the lowest (in our casenegative) curvature
at a pointR can be calculated by an alternative method, the dimer method,
that requires in most cases a much small number of force evaluations. The
dimer consists of two physical configurationsR+ 1

2d andR− 1
2d that are sep-

arated by a given small distanced. If one minimizes the sum of the energies
E(R+ 1

2d)+E(R− 1
2d) with respect tod under the constraint that the distance

d be constant, the vectord will align along the mode with the lowest curvature.
Since the pointR is fixed we can alternatively also consider the expression

1
2

(

E(R+
1
2

d)−2E(R)+E(R− 1
2

d)
)

(31)

for the minimization which represents a finite difference for the second deriva-
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tive. The Taylor expansion of the first term in these energy sum gives

E(R+
1
2

d)≈ E(R)+ 〈d|g(E(R)〉+ 1
2
〈d|A|d〉

Doing the analogeous Taylor expension forE(R− 1
2d) and inserting both of

them into Eq. 31 gives

E(R+
1
2

d)−2E(R)+E(R− 1
2

d)≈ 〈d|A|d〉

Minimizing 1
2〈d|A|d〉 under the constraint of a fixed length12〈d|d〉 = constis

by definition identical to finding the eigenvector associated to the lowest eigen-
value as can for instance be seen by adding the constraint with a Lagange pa-
rameterλ to the condition that the constrained gradient be zero:

Ad−λd = 0

The Lagrange equation is also the basis for a numerical minimization of the
energy in Eq. 31. The gradientg is given by

g= Ad− 〈d|A|d〉〈d|d〉 d
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As usual, following the Langrange gradient conserves the constraint only to first
order and therefore an explicit renormalization of the distance is required after
each update in any minimization method.
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Quasi Newton methods to find saddle points
We have seen how an approximative Hessian matrix can be buildup from finite
differences of the gradient vectors in a Quasi Newton minimization. We have
also seen how the lowest curvature directions can be found bya dimer rotation
without the need to calculate and diagonalize the Hessian matrix. These two
ingredients can be combined to obtain a very efficient methodto locate saddle
points. In this method dimer rotations are alternatingly performed with transla-
tions of the dimer center. The gradient vector is decomposedin each iteration
into the component parallel to the dimer and its orthogonal complement. The
step size along the parallel direction is, in the usual way, given by the inverse
curvature. Near a saddle point this curvature will be negative and in this way
the parallel component will be inverted. If one is far away from the saddle point
where the lowest curvature mode might be positive the parallel part is explicitly
inverted to avoid ending up in a minimum. The orthogonal component is pre-
conditioned by the approximate Hessian obtained during theprevious iterations
from the differences of the gradient vectors. If the dimer rotation was tight
enough to find the exact lowest curvature direction and if theQuasi Newton
Hessian was identical to the exact Hessian, this prescription would be identical
to the operations given by Eq. 27,28 for the Newtom method. Inpractice both
quantities are only approximate which is however sufficientin practice to obtain
fast convergence at greatly reduced cost compared to a Newton method.
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Noise in Quasi Newton methods
The standard formulas from calculus tell us that the derivative f ′(x) can be
obtained as a finite difference of the neigbhouring functional values f (x+ h)
and f (x) and that the error is proportional toh, i.e.

f ′(x) = ( f (x+h)− f (x))/h+O(h)

Whereas in the analytical formula the error from the finite difference decreases
with decreasingh this is typically not the case in numerical work. If the func-
tion f (x) is evaluated numerically it is always contaminated by noise, i.e the
numerical evaluation does not returnf (x) but f (x)+σ(x) whereσ is the noise.
Usually σ(x) is much smaller thanf (x) and mo problems arise. If one take
however finite differences of two very similar functional values (very small h
in our example) problems can arise. I the difference in the functional values is
much less than the noise level then

f (x+h)+σ(x+h)− f (x)−σ(x)) =≈ σ(x+h)−σ(x)

and the finite difference can give completely wrong values for the derivative.
Exactly this scenario applies if Hessian curvature information is obtained in a
Quasi Newton method from finite differences of the gradientsclose to conver-
gence. In this case the gradient is approaching zero and the noise level can
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be comparable or even larger than the norm of the gradients. Numerical op-
timization clearly becomes impossible and meaningless in the extreme case,
where gradients are completely dominated by noise. The optimization pro-
ceudre should therefore contain some diagnostic tools thatrecognize when the
noise level becomes so important that the optimization procedure should be
stopped. The negative effect of a moderate noise level can however be attenu-
ated by a noise elimination process as described in the following.

The figure below shows a set of vectorsvi ’s. The similar vectors represent
noisy forces. So without noise they would be identical. Let us now consider
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linear combinations of these vectorsvi ’s

w = ∑
l

cl vl

under the constraint that

∑
l

c2
l = 1

If we take nearly identical vectorsvl that differ only by some noise, then we can
obviously form a vectorw that is very short. If on the other hand the vectors
are different and in particular if they are orthogonal, we can not obtain a short
vector by a linear combination of them. The longest and shortest vectors as well
as vectors of intermediate length can be obtained in a mathematically rigourous
way by diagonalizing the overlap matrixSgiven by

Si, j = 〈vi |v j〉= ∑
k

vi(k)v j(k)

The eigenvaluesλk of the this matrix are the squared lengths of the linear com-
binations of the original set of vectorsvl and the corresponding eigenvectorsck

the expansion coefficients
wk = ∑

l

ck
l vl
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with
〈wk|wk〉= λk

So vectorswk with short length are essentially linear combinations of noisy
forces. By excluding these vectors on can generate a subspace of lower dimen-
sion. This subspace, shown by the blue vectors in the figure above, represents
then the significant subspace within which a subspace Hessian can be build up
with confidence using the Quasi Newton method.
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Two sided saddle point mehods
The modified Newton method presented in the previous sectionassumes that
one has an initial structure which, ideally, is close to a saddle point. It will then
converge to this close by saddle point. Methods of this type are called one sided
methods. Frequently one has however only two local minima and one has no
good guess for an approximate saddle point. So-called two-sided methods can
in this case find the saddle point connecting the two minima. Awidely used
method is the nudged eleastic band method. It is a refinement of the simple
idea to span an elastic rubber band from one minimum to the other over the
potential energy surface. The potential is evaluated alongcertain pointsRi on
the elastic band. TheseP points are called images. Mathematically this gives
rise to an object function defined as

f (R0,R1, ...,RP) =
P

∑
i=0

V(Ri)+
P

∑
i=1

k
2
(Ri−Ri−1)

2

The force acting on imagei is then given by

Fi =−∇V(Ri)+Fs
i

where
Fs

i =−k(Ri+1−Ri)+k(Ri−Ri−1)
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As shown in the figure below this method has a serious shortcoming. In the
region close to the saddle point there is a corner cutting andso the saddle point
is not on the band and significantly lower in energy than the highest point along
the path. This corner cutting can be reduced if the spring constantk is reduced.
But in this case the two images bracketing the saddle point will be pulled down
too much by the action of physical force.
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These problems can be cured in a simple way. From the physicalforce one
uses only the component perpendicular to the band and from the elastic spring
forceFs only the parallel component

F̃i =−∇V(Ri)⊥+Fs
i‖

where
Fs

i‖ = Fs
i · t̂ t

and
∇V(Ri)⊥ = ∇V(Ri)−∇V(Ri) · t̂ t

t̂ is the unit tangent vector to the band. Obviuously this tangent vector is nu-
merically only well defined if there are many images along thepath, i.e if their
distance is short in which case on can either put

t̂ =
Ri−Ri−1

|Ri−Ri−1|
or

t̂ =
Ri+1−Ri

|Ri+1−Ri |
The nudged elestic band method requires as an input guess allthe images

which specify the path along the band. This can actually be the most difficult
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part in practice. One possibility is to do a simple linear interpolation between
minimum A and B. However it is in principle unknown which atomof config-
uratioon A maps onto which atom of configuration B. If this mapping is not
optimal very high energy path can result which miss the true saddle point. If
if the mapping is correct a linear interpoation can also leadto some very high
energy configuration where for instance some atoms come veryclose. This can
therefore lead to convergence problems if the poetntail energy surface is calcu-
lated within density functional theory. As a matter of fact finding saddle points
wth two sided methods is nowadays still a problem for which nomethods exist
which could do the job in a fully automatic way.
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Global geometry optimization

The minimization methods discussed previously such as the steepest descent or
conjugate gradient method can be used for local geometry optimizations. In a
local geometry optimization you fall into the local minimumthat is closest to
your starting point. Because the condition number of the Hessian is frequently
bad, the convergence of these methods can be slow, but nevertheless it is guar-
antueed that they will finally find a local minimum. Finding the global mini-
mum of the total energy function is a much more complicated problem. There
exists no algorithm that will find the global minimum with certainty within a
computing time that grows less than exponentially with respect to the system
size. Systematically exploring the high dimensional spaceis impossible in prac-
tice. Covering it with a grid ofm points in each direction would requirem3Nat

grid points because the dimensionality of the Born-Oppenheimer surface of a
system ofNat atoms is 3Nat. In spite of the mentioned theoretical obstacles
there are however algorithms that can find the global minimumfor moderately
complex systems within acceptable computing time. This is due to the fact that
many local minima are frequently grouped together in funnellike structures (as
discussed previously) where many algorithms rather easily’fall’ down in the
minimum at the bottom of the funnel. If this minimum at the bottom is the
global minimum one has succeded, if not the algorithm has to be able to climb
out of this wrong funnel. This is the difficult part where manyalgorithms fail.
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Genetic algorithms

Genetic or evolutionary algorithms try to mimic the Darwinistic evolution to
solve global optimization problems. The principle is the survival of the ’fittest’
and genetic algorithms are for instance using steps that arecalled mutations and
crossovers. The basic quantity is a population of individuals that are represented
by their genes. Numerically these genes are binary strings.A mutation consists
of a random change of a gene, i.e. of a flip of one or several of the bits in a gene.
It is thus similar to a trial step move in a Monte Carlo method.What is really
new compared to Monte Carlo methods is the concept of gene crossovers. Given
two genes of two individuals a crossover point is first determined at random and
then the genes are combined as shown below to obtain a child.

1 0 0 1 1 1 1 0 0 1’mother gene’
1 0 1 1 0 0 0 1 1 1’father gene’
——– ————-
1 0 0 10 0 0 1 1 1’child gene’

Gene crossing makes only sense if neighboring genes determine common func-
tionalities. This can be easily seen by going back to biology. If for instance
in the example above, the first 4 genes encode the functionality of ear and the
last 6 the functionality of the eye, then the child has a certain chance having
both good ears and a good eyes assuming that the mother had good ears and
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the father good eyes. If however the first 5 genes determine the ear and the last
five the eye then the above crossover after the fourth bit willvery likely result
in both ears and eyes that do not work very well.
After performing the operations of mutation and crossoverson a population
comes the final survival step. The fitness of each individuali in a population that
may consist of parents and children generated by both mutations and crossovers
is measured by its fitnessfi which would be in a physical problem for instance
the negative of the energy of a configuration. The average fitness of our popu-
lation< f > of N individuals is given by

< f >=
1
N

N

∑
i=1

fi

The survival rate of an individual is then proportional tofi/ < f >.
Repeating the processes of mutation/crossover and survival gives fitter and fit-
ter populations and the hope is that finally a population might contain a ’per-
fect’ individual, which in the mathematical language wouldbe the global max-
imum/minimum.
Applying standard genetic algorithms to structural optimization is problematic
for several reasons. First, it is unnatural to represent atomic positions by short
binary strings. A continuous problem is in this way mapped onto a discrete
problem. Second it is not quite clear how to do the crossover in an efficient
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way. In order to optimize the structure of clusters, people devised a crossover
process that is not based on binary strings but simply combines the parts of two
clusters as shown below.

Genetic algorithms based on this geometric crossover mechanism work well for
clusters that have icosahedral ground states but are not applicable for finding
more complicated ground state structures. For periodic structures it seems to
be much easier to come up with efficient crossover and mutation moves and
evolutionary algorithms work very well and have already allowed to discover
many interesting new materials.
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Simulated annealing

Simulated annealing is based on thermodynamics. At a sufficiently low tem-
perature the system will be in the ground state, i.e. in the global minimum
ε0 of the potential energy surface since all other minimaεi have a Boltzmann
weight exp(−β(εi − ε0)) that is vanishingly small. The Eliminating noise in
Quasi Newton methodimplex simplest implementation of simulated annealing
is based on molecular dynamics. The system is propagated using Newton’s
equations of motion. Ergodicity ensures that the thermodynamic Boltzmann
distribution is finally reached. Molecular dynamics based simulated anneal-
ing is thus imitating what is happening in nature during a crystallization pro-
cess. While the system is slowly cooling down the atoms move according to
Newton’s law and find finally the global minimum, which is the perfect crystal
structure. One is thus only left with setting up a prescription for the cooling
rate. The simplest cooling recipe is just to impose an exponential decrease
of the temperature. A template program implementing this simplest simulated
annealing method is shown below. Some values (4.d0, .9999d0etc) are just ex-
amples and other values may be more appropriate in other contexts. It has to be
stressed that there is no guarantee that the global minimum will be obtained at
the end of the run. Frequently the trajectory gets trapped inother local minima,
i.e. it has not enough energy to go from the present minimum over a barrier
into another local minimum. One should therefore do many runs with differ-
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ent initial atomic positions and different parameters before one can state with a
certain confidence that one has found the global minimum.

read initial atomic positions and calculate initial forces

ref_kin=4.d0
1000 continue

ref_kin=ref_kin*.99999
if (ref_kin.le.1.d-3) goto 2000

DO A VELOCITY VERLET MD STEP AND CALCULATE THE KINETIC ENERGY act_kin

if (act_kin.gt.ref_kin) then
reduce velocities by a factor of .99d0

else
increase velocities by a factor of 1.01d0

endif
goto 1000

2000 continue

write final atomic positions
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The thermodynamic approach to the global
minimum search

• Basic idea:
A Monte Carlo algorithm is used to generate a thermodynamic Boltz-
mann distribution. At sufficiently low temperature the ground state con-
figuration will be the dominant configuration.

• Problem:
Thermodynamics does not tell us how fast the thermodynamic equilib-
rium distribution is obtained

– Monte Carlo works fine for funnel like landscapes

– Monte Carlo is not efficient if the landscape consists of several fun-
nels: system remains trapped in a ’wrong’ funnel
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Trapping in Monte Carlo

Because of the Boltzmann factor exp(−β(Enew−Ecurrent)) all moves that try to
escape from a basin or (wrong) funnel are rejected at low temperatures

Original pot. energy surface
Basin hopping pot. energy surface

0-73



Minima hopping algorithm

The minima hopping algorithm combines the local geometry optimizations ap-
plied in several other methods such as in genetic algorithmsor basin hopping
with the molecular dynamics based moves found in simulated annealing. Be-
cause both local geometry optimizations and molecular dynamics can be per-
formed for nearly any system is is applicable to virtually any solid state system
such as molecules, cluster, proteins and crystalline solids. Two basic features
are mainly responsible for its high efficiency:

• It exploits the Bell-Evans-Polyani principle, i.e. it moves from one mini-
mum to the next by crossing low barriers.

• By a build in feed back mechanism trapping in some region of the con-
figurational space is excluded. Hence the algorithm does notexplore
again and again known configurational regions but explores new regions
instead.
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initialize a current minimum ’Mcurrent’

ESCAPE TRIAL PART
MDstart: start a MD trajectory with kinetic energy Ekinetic from current minimum

’Mcurrent’. Once potential energy reaches another minimum along the trajectory
stop MD and optimize geometry to find the closest local minimum ’M’

if (’M’ equals ’Mcurrent’) then
Ekinetic = Ekinetic*beta1 (beta1 > 1)
goto MDstart

else if (’M’ equals a minimum visited previously) then
Ekinetic = Ekinetic*beta2 (beta2 > 1)
goto MDstart

else if (’M’ equals a new minimum ) then
Ekinetic = Ekinetic*beta3 (beta3 < 1)

endif

DOWNWARD PREFERENCE PART
if ( energy(’M’) - energy(’Mcurrent’) < Ediff ) then

accept new minimum: ’Mcurrent’ = ’M’
add ’Mcurrent’ to history list
Ediff = Ediff*alpha1 (alpha1 < 1)

else if rejected
Ediff = Ediff*alpha2 (alpha2 > 1)

endif

goto MDstart
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Significance of the Bell-Evans-Polanyi (BEP) principle for
global optimization

The BEP principle comes originally from chemistry, where itstates that highly
exothermic chemical reactions have a low activation energy. In the context of
global optimization it implies that low barrier escape paths lead on the average
into lower local minima than high barrier escape paths. Thisbasic tendency
can be seen from the figure below where the PES along the reaction pathway is
represented by two parabolas. Pulling down the blue parabola will also lower
the saddle point represented by the intersection ofthe two parabolas.
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Numerical verification of the BEP principle for a LJ cluster
The pictorial arguments put forward to establish the validity of the BEP princi-
ple are of course approximate and it is to be expected that there are exceptions.
The numerical test of the validity of the BEP principle in thefigure below shows
indeed that it can be strongly violated in certain cases as can be seen from the
strong scattering of the black crosses in the plot of activiation energy (barrier
height) vs the energy difference between the two connected minima. If one
takes however averages in this huge data set of 30 000 sadlle points one obtaind
the red line which indicates a virtually perfect validity ofthe BEP principle on
average. This validity on average is sufficient in the context of global minimiza-
tion.
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Optimal MD trajectories

MD trajectories that start out in ”soft” directions lead fastest over a low energy
saddle point into another minimum
Soft directions are found by minimizing the energy of a second image system
under the constraint that it has a fixed distance from the local minimum.

Empirical correlations between the curvature along the initial direction of the
MD trajectory and the bqarrierheight overcome by the trajectory can be found:
Low curvature leads on average to low barriers

0-78



Example: minima hopping for a 512 atom NaCl cluster
This cluster is well suited to illustrate how minima hoppingworks in practice.
In addition to the ground state funnel associated to the global minimum which
is a 8 by 8 by 8 cube the system has other funnels which correspond to other
orthorombic shapes such as the 7 by 8 by 9 structure shwon below on the right.
These other orthorombic shapes can of course not be build perfectly since the
number of atoms does not match. The figure below on the left shows the ener-
gies of the various minima visited during a minima hopping run together with
the kinetic energy of the molecular dynamics trajectory. Itcan be seen that the
kinetic energy always increases strongly if the system getstrapped in a funnel
which then allows to escape from the funnel. The escape from afunnel can thus
be considered as some kind of melting event, whereas the system freezes when
it goes down within a funnel.
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Distribution of search lengths
All the methods for global optimization discussed in this course are stochastic.
As a consequence the time needed to find the global minimum varies from one
run to the next. Such a distribution of search lengths of a minima hopping run
is shown in the figure below. In the case of minima hopping, random numbers
are used to generate the initial velocity vector in the molecular dynamics es-
cape step. For a single funnel system the distribution is exponential. For an
exponential distribution one serial long search is equallyeffective as several
short parallel searches whose summed length is equal to the length of the serial
search. For multifunnel systems the distribution is a superposition of several
exponential functions. In such a case several shorter parallel searches are more
efficient than a long serial search.
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The BigDFT software package

Solves the many-electron Schrödinger equation in the Kohn-Sham density func-
tional approximation using a wavelet basis
This basis set combines the advantages of
Plane waves:

• Systematic, orthogonal basis set

• Localization in Fourier space allows for efficient preconditioning tech-
niques.

Gaussians:

• Localized in real space: well suited for molecules and otheropen struc-
tures.

• Adaptivity
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High order Daubechies wavelets are used to represent wavefunctions
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Application of minima hopping to the formation of C60

Visualization at: http://www.unibas.ch/comphys/comphys/a.gif
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Application of dual minima hopping to metal doped silicon
clusters

Fullerene like endohedrally doped Si20 cages are only metastable configurations
but not the ground state

Fullerene ground state
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Application of minima hopping to heterofullerenes
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The ground state ofB80

SzwackiB80 fullerene B80 ground state

0-86



The configurational energy spectrum ofC60 and B80
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Disconnectivity graphs for the Au26 cluster
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(111) surface reconstruction of boron leads to sheets
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Application of minima hopping to alanates

Ground state is polymer like
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Application of minima hopping to protein folding
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Low energy crystaline structures of silicon

Many crystalline structures exist within a small energy interval
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Quantifying similarities between structures
Quantifying similarities between structures is required in many contexts in atom-
istic simulations. The most elementary question is whethertwo structures are
identical or not. This question is far more complicated thanone might think.
Even if two structures are absolutely identical one structure will in most cases
be rotated and translated with respect to the other one. For larger system it is
in such a case in general impossible to detect by eye whether the structures are
identical or not. In addition the two structures are in general not absolutely
identical but only nearly identical because of the presenceof noise coming ei-
ther from an experiment or a simulation. In the case of experiment, two identi-
cal structures can for instance be measured by two differentexperimental setups
which will lead to slightly different results. In the case ofa computer simulation
we have learned that a geometry optimization is stopped if the force norm is be-
low a certain non-zero threshold. Therefore the structuresare never perfectly
relaxed and two structures that would become identical if the relaxation was
continued until the forces are really zero, will in practicebe slightly different.
Quantifying similarities in terms of a distance is also veryimportant for various
classification methods such as clustering. In an clusteringprocess on puts to-
gether similar structure that have a small configurational distance amomg each
other into a so-called cluster.
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Properties of a metric
It is natural to characterize the dissimilarity between twostructuresp andq by
a real numberd(p,q) ≥ 0. In order to give meaningful resultsd(p,q) should
satisfy the properties of a metric, namely

• coincidence axiom:d(p,q) = 0 if and only if p≡ q,

• symmetry:d(p,q) = d(q, p),

• triangle inequality:d(p,q)+d(q, r)≥ d(p, r).

The coincidence axiom ensures that two configurationsp andq are identical
if their distance is zero. The triangle inequality is essential for clustering al-
gorithms. If it is not satisfied, then it could happen that a configuration that
is within one cluster is also part of another cluster even though the distance
between the two clusters is very large in configuration space.
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The RMSD
A configuration ofn atoms is represented byR≡ (r1, r2, . . . , rn)∈R3×n, where
the column vectorri represents the Cartesian coordinates of atomi. The root
mean square deviation (RMSD), a distance based on the simpleFrobenius norm,

‖Rp−Rq‖=
( n

∑
i=1

‖rp
i − r

q
i ‖2

)1/2
(32)

can not be used to compare two configurations p and q, because it is not invari-
ant with respect to translations or rotations of one configuration relative to the
other. For this reason the commonly used root-mean-square distance (RMSD)
is defined as the minimum Frobenius distance over all translations and rotations.
By minimizing ∑n

i ‖r
p
i + d− r

q
i ‖2 with respect to the translation vectord one

obtains∑n
i (r

p
i + d− r

q
i ) = 0. Therefore we will assume in the following that

all ri are measured with respect to the centroids of the corresponding configu-
ration which allows us to drop the minimization with respectto the translation
d. Then, finding the rotationU around the common centroid which minimizes

RMSDl (p,q) =
1√
n

min
U

‖Rp−URq‖ (33)

is a local minimization problem and hence we denote this version of the RMSD
by RMSDl . The use of quaternions allows to find the optimal rotation insingle
step extremely rapidly.
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Quaternions
A quaternionQ = (Q0,Q1,Q2,Q3) is an extension of the idea of complex num-
bers to one real (Q0) and three imaginary parts. According to the Euler’s rota-
tion theorem, a rotation in space which keeps one point on therigid body (cen-
troid in our case) fixed, can be represented by four real numbers: one for the
rotation angle and three for the rotation axis (we assume that the center of rota-
tion is on the origin). A unit quaternion, i.e.‖Q ‖2 = Q 2

0 +Q 2
1 +Q 2

3 +Q 2
4 = 1,

can conveniently represent this axis-angle pair as

Q =
(

cos
(θ

2

)

, ûsin
(θ

2

)

)

whereθ is the rotation angle around the unit axisû = âi +bĵ + ck̂. The corre-
sponding orthogonal rotation matrix is

U =





Q 2
0 +Q 2

1 −Q 2
2 −Q 2

3 2Q1Q2−2Q0Q3 2Q1Q3+2Q0Q2

2Q1Q2+2Q0Q3 Q 2
0 −Q 2

1 +Q 2
2 −Q 2

3 2Q2Q3−2Q0Q1

2Q1Q3−2Q0Q2 2Q2Q3+2Q0Q1 Q 2
0 −Q 2

1 −Q 2
2 +Q 2

3



 .

Assume thatU is the 3×3 equivalence of the rotation operatorU in Eq. 33. The
optimum rotationU which minimizes RMSD, indeed maximizes the correla-
tion betweenRp andRq, i.e. the atomic Cartesian coordinates with respect to
the common center of mass. Based on quaternions, the optimumU is given by
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Q which is identical to the principal eigenvector of the 4×4 symmetric, trace-
less matrix

F =









Rxx+Ryy+Rzz Ryz−Rzy Rzx−Rxz Rxy−Ryx

Ryz−Rzy Rxx−Ryy−Rzz Rxy+Ryx Rxz+Rzx

Rzx−Rxz Rxy+Ryx −Rxx+Ryy−Rzz Ryz+Rzy

Rxy−Ryx Rxz+Rzx Ryz+Rzy −Rxx−Ryy+Rzz









whereR is the correlation matrix whose elements are given byRxy = ∑n
i xp

i yq
i .

Note that, without applyingU onRq, Eq. (33) is given by

RMSD(p,q) =

√

1
n

(

‖Rp‖2+‖Rq‖2−2λ∗
)

whereλ∗ is the largest eigenvalue ofF .
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Globally minimized RMSD

The RMSDl is however not invariant under index permutations of chemically
identical atoms. If the configurationp and q are identical, Eq. (33) will be
different from zero if we permute for instance inRq the positionsrq

i andrq
j of

atomsi and j. This is important since for instance during molecular dynamics
or a geometry optimization, atoms may be flipped. The minimumFrobenius
distance obtained by considering all possible index permutations for an arbitrary
rotationU is

RMSDP (p,q) =
1√
n

min
P

‖Rp−URqP‖, (34)

P being ann× n permutation matrix. This assignment problem is solved in
polynomial time using the so-called Hungarian algorithm. However, what is
really needed is a solution of the combined problem of the global minimization
over all rotations and permutations, namely

RMSD(p,q) =
1√
n

min
P ,U
‖Rp−URqP‖. (35)

The global minimum RMSD fulfills all the properties of a metric. The coin-
cidence and symmetry properties are easy to see. Using the standard triangle
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inequality, the proof of the triangle property is as follows:

RMSD(p,q)+RMSD(q, r)

=
1√
n

min
P ,U
‖URpP −Rq‖+ 1√

n
min
P ,U
‖Rq−URrP‖

=
1√
n
‖UpqR

pPpq−Rq‖+ 1√
n
‖Rq−UrqR

rPrq‖

≥ 1√
n
‖UpqR

pPpq−Rq+Rq−UrqR
rPrq‖

≥ 1√
n
‖Rp−UrpR

rPrp‖

= RMSD(p, r)

where min
P ,U
‖URpP −Rq‖ is denoted by‖UpqR

pPpq−Rq‖. In some appli-

cations, one might apply restrictions to the permutations in order to reduce
the size of the permutation space. For instance, in an application to organic
molecules only equivalent atoms have to be permuted. Equivalent atoms in
an organic molecule are considered for example those that have identical con-
nectives. Finding the globally minimized RMSD is in principle again a global
optimization problem. In practice it can be solved for not too large system by
Monte Carlo methods.
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Fingerprints
The fact that finding the globally minimized RMSD is a numerically costly
global optimization problem calls for metrics that are cheaper to calculate.
Quantities that allow to characterize a structure are frequently called finger-
prints. If distances can be calculated betwenn two such fingerprints, they can
be an alternative to the RMSD. As consequence a very large number of finger-
prints describing a structure way have been proposed. Many of these fingerprint
are based on interatomic distances. It turns out that interatomic distances alone
do not give optimal fingerprints. In some cases interatomic distances can not
even uniquely characterize a structure. Two distinct structures with identical
interatomic distances are called homo-metric and an example is shown below.
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Fingerprints based on eigenvalues of symmetric matrices
We consider symmetricM×M matrices whose elements depend only on the
interatomic distancesr i j = ‖r i − r j‖ of an N-atom configuration. VectorsV
containing eigenvalues of such a matrix form a configurational fingerprint that
allows to identify a structure. The normalized Euclidean distance

∆V (p,q) =
1√
N
‖V p−V q‖ (36)

measures the dissimilarly between p and q with no need to superimpose them.
A simple example of such a matric is the contact matrixC. Its matrix element
Ci, j is 1 if the distance between atomii and j is less than the sum of the co-
valents radii plus some margin and zero otherwise. Diagonalelements can be
set to zero. The matrix elements of this matrix change discontinuously if bonds
are stretched by more than the margin. Therefore some smoothcutoff function

is more appropriate like for instanceCi, j = exp(−−(r i−r j )
2

(σi+σ j )2
. As a consequence

the eigenvalues of this function will then also vary smoothly. TheN eigenval-
ues of such a smoothN×N contact matrix will however not be sufficient to
characterize the structure in a unique way, since there are 3N− 6 degress of
freedom. It can be shown that for any matrix of dimensionM less than 3N−6
there exists a subspace of at least dimensionM−3N+6 where all the structures
have the same fingerprint. For a unique characterisation we have therefore to
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find a matrix whose dimension is larger than 3N−6. One possible matrix of
this type is a overlap matrix, familiar form quantum mechanical calculations,
where one has one s and 3 p-type atomic orbitals per atom. In this way one
obtains fingerprint vectors of length 4N which are long enough to character-
ize the structure in a unique way. Other possibilities are the eigenvalues of the
Kohn-Sham Hamiltonian or the eigenvalues of the Hessian matrix.
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