Global optimization on the
potential energy surface

Stefan.Goedecker@unibas.ch

e Lecture notes: http:/comphys.unibas.ch/teaching.htm
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Basic computer skills
e Linux operating system
e some editor; recommended: vi
e Fortran programming

e Some visualization software; recommendedsi¥h :
http://www-drfmc.cea.fr/sp2m/ISim/V_Sim/index.en.html|
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The total energy and its significance
The so-called total enerdy is a function that gives the energy of an atomistic
system in terms of its atomic positions. Denoting the atopasitions of the
system being composed Nf; atoms byR; wherel = 1, ..., Ny our function has
the following form:

E=E(R1,....Rny)

The position of thej-th atomRj is a vector of length 3 with thethree com-
ponents(Xj,Y;j,Zj). Since the electrons are responsible for the interactions
of atoms in condensed matter systems one has to solve inpertbe elec-
tronic Schbdinger equation to obtaig. The solution of the many-electron
Schroedinger equation gives several sets of correspomagemvalues; and
eigenvectorsd;.

HWY; = WY,

The eigenvalues have the significance of energies and teevagtor are the
wavefunctions. The set with the lowest enelfly corresponds to the elec-
tronic ground state and the other sets to excited electsiates. The energies
E; of each set depend on the positions of the atoms since theltdaran is
parametrized by the atomic positions:
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?{(Rl,...,RNat,rl,...,rN): (1)
N Nat : Nat 1—1 Z|ZJ

5 N i—-1
5% *Z “hAn R
Zl j= 1‘r|_rl| j= l‘rl RJ| le‘Rl RJ"

whereD2 a 2 + 5’22 + o7 . The various functiong;(Ry,...,Rn, )i are called

Born- Oppenhelmer surfaces. The Born-Oppenheimer swiafcexcited elec-
tronic states are only rarely used, for instance in photoote reactions and
we will therefore in the following only consider the grourtdte Born-Oppenheimer
surfaceskg which is also called Potential Energy Surface (PES). Forveon
nience we will also drop the subscript and simply But Ep.

The exact solution of the many electron Smthnger equation is numerically
extremely expensive and can only be done for small systerme &pproxima-
tions to the exact Schdinger equation such as density functional theory are
numerically quite expensive. For this reason we will usehis tourse the
simplest model for the PES, namely the Lenaard Jones (Lénpal The in-
teraction between two LJ atoms is given by

E=V(r) =4¢((2)2-(2)°) @)

€ Is the depth of the well and the distance at which the potential is zero. The
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Interaction betweely; LJ atoms is given by

E = V(|Ri —Rj|) (3)
i<JZNat |

The Lennard Jones potential (with appropriate vakiasdo) describes well
the interaction of noble gas atoms, but also some metallgtets can approxi-
mately be modelled.
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Landmark points of the potential energy surface: Minima and
saddle points
A toy PES: 2 local minima, 1 saddle point

Pot. E. Surface

e global minimum: ground state
e other local minima: metastable states

e one saddle point: transition state
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Significance of Minima
The knowledge of the total energy function allows us to detee the equi-
librium atomic positions. We can calculate the partial esives aaFIeE, This is

a vector of length 3 with the componer(t E] : 351 ;32

atom|, fj, is the negative of this partial derivative.

) The force acting on

oE

A stable atomic configuration is by definition a configuratwinere the forces
on the atoms vanishes, i.e where all the partial derivatfdebe total energy
with respect to the atomic positions are zero. A equilibriconfiguration (or
equilibrium geometry) of a molecule corresponds therefo@estationary point
of the total energy function. Since the configuration has &dsconserve its
stability under small displacements away form the stappaint, the station-
ary point has to be a local minimum of the total energy functi®his means
that small displacements away from the stationary poink aWlays lead to
an increase in energy. From a mathematical point of view al lognimum

IS characterized by the fact the the curvature along anydaieg through the
local minimum is positive or, equivalently, that the Hegsmatrix is positive
definite.
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Let us illustrate the concept by the total energy functiorthe simplest
molecule, namely thél, molecule. Even though the total energy function is
formally a function of 6 variables, it is clear from physi@ansiderations that
the energy depends only on the distance between the 2 hydabgens. Hence
the total energy can be reduced from a 6 dimensional to a anergiional
function. The function is sketched below.

3

E(d)/E_bond
[=Y

-1

d/d_bond

The minimum of the above curve gives obviously the bond lewfthe hydro-
gen molecule and the depth of the curve its binding energy.
Configurations of more complicated molecules can in priech® obtained in
the same way, namely by finding local minima of the total epeMumerical
methods that allow us to find local minima of high dimensidaictions will
be discussed later.
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Realistic PESs have an important difference from the sirapés discussed up
to now. The number of minima is in general huge. As a mattemof, fthe
number of local minima increases exponentially with resp@the number of
atoms om the system. This can easily be seen for some simplel regstem
such as alkanes or bulk silicon.

First example: alkane familg,Hon.2: O(3") local minima
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Second example: bulk silicon:(@") local minima

Wooten-Winer-Weaire process:
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Visualizing the potential energy surface
Visualizing the entire PES is in general impossible duesdigh dimensional-
ity. Below is an heroic effort for the highest possible dirsiem!

from: S. Chan and K. Dill, Proteins: Structure, Function,da@enetics30, 2 (1998)
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Funnels are typically associated to structural motifs

4 x 4 x 4 funnel 3 x5 x4 funnel
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Disconnectivity graphs

So-called disconnectivity graphs are probably the besttwassualize PESs.
The height of each leave gives the energy of a local minimurne Aighest
point of the lines connecting different leaves gives thghteof the barrier that
has to be overcome on the PES when crossing from one minimtine twther
one. The appearance of such a disconnectivity graph allovaetect easily
the character of a PES. The disconnectivity graph on the hghd side below
corresponds to a single funnel system that can easily figgotsnd state (global
minimum), whereas the graph on the left hand side corresptnal two funnel
system.
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Minimization without gradient: The downhill simplex metho d

The Downhill simplex method of
Nelder and Mead is an extremely simplex al start of procedure
high peint

simple and stable method to min- jow point

Imize a function if no derivatives
are available. It requires as an ini- o o
tial input a simplex in theN di-

mensional space together with the

functional values on the corner of

this simplex. A simplex in arN ) refloction and

dimensional space hds + 1 cor- e

ners. A simplex in two dimensions

Is a triangle, inthree dimensions an, | © contraction
;-‘"?r\‘

In general, not reqular tedrahedron.
During the minimization this sim-

plex undergoes a series of transfor- d S
mation shown in the Figure to the (<) R e\ all dirsctions

right. Im most transformations the
corner with the highest functional
value is moved.
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The simplex is able to adapt to the topology of the functionganinimized. In
a strechted valey for instance it becomes also elongategertieless its con-
vergence rate is typically much lower than for the methogsabng gradient
information. Like all methods which do not stop based on gnaidthreshold
norm, the downhill simplex method can get stuck even thoudtas not yet
reached a local minimum. Therefore it is recommended to aeeskestarts
with different initial simplexes, before claiming to havahd the minimum. A
movie showing the behaviour of the simplex during a miniraa@ais available
at: http://optlab-server.sce.carleton.ca/POAnima®7/NonLinear7.html.
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Minimizing a continuous 1-dim function

Minimizing a smooth functiorE(x) is considerably easier than minimizing a
non-smooth or even discontinuous function. If the first vhlive exists, it
points in the direction of the strongest increase of thetionc The opposite di-
rection consequently gives the strongest decrease of tloidn. The so-called
steepest descent iteration

X11=X—aE'(x) (5)

will therefore converge to the minimuBa(xy ) of the functionk if the step size
a is sufficiently small. Ifa is too large the iteration will diverge.

Next, we will discuss the case where the second derivatistseas well.
Using in a combined way the information on the first and secd&avative
gives the most efficient minimization algorithms. The imi@tion about even
higher derivatives is typically not used since this wouldtbe complicated.
Consequently we can assume in our discussion of minimizafigorithms that
we have to minimize a quadratic function. Then we can do aofatpansion
of the functionf and its derivative around an arbitrary point ~

E(x) = E()”()+(X—>”<)E’(>?)+%(x—>”<)2E”

E'(x) = E'(R)+(X—KXE" (6)
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The stationary poit = X where the derivative vanishes can easily be obtained
by solving Eq. 6.
xw = X—E'(X)/E" (7)

We assume it is a minimum (i.&€"” > 0) and not a maximum. Eq. 7 gives rise
to the Newton iteration

X+1=X —E'(x)/E" (8)

The iteration of Eq. 8 will obviously converge in a singlegster a quadratic
function, but several iterations are needed for a generattion. In the case
of a quadratic function we did not have to worry where to exdithe second
derivative since it was a constant. This is of course not anyentrue for a
general function. As a matter of fact we see that for the aneedsional case
we are discussing, Eqg. 5 and Eq. 8 are identical if weopstl/E”. Therefore
one best adopts for the one-dimensional case the point wfthiat we just do
steepest descent iterations wheris of the order of YE”, but small enough to
ensure convergence. In this case we do not have to answeundisaan where
to evaluatee”.

Exercise Minimize the function describing the LJ potential (Eq. 2hmarically
using Eq. 5. For which starting values does the iteration gf &diverge if we
evaluate E at x

0-16



Minimizing continuous many-dimensional functions
The basic concepts of the 1-dimensional case can be camszdndo the many
dimensional case. The steepest descent iteration becomes

X=X —0ag(X) (9)

whereg(X) = UE(X) is the gradient of the functioE. As in the 1-dim case this
will converge to a minimum itx is sufficiently small.

For a function where the second derivatives exist we camag@aia Taylor
expansion

1 ~

EX) = EX)+X—X)"g(X) + 5 (XR—X)TA(X—X) (10)
d®) = X +ARX-X) (11)
whereA is the Hessian matrix
. 0 0
Al, ) = YOE j)E(X’) (12)

For a quadratic form the Hessian matrix would not depend erethaluation
point, for a general function it of course does and the probdnere to evaluate
it will be postponed. Solving Eg. 11 féfrleads to the Newton iteration

Xi1=X—-A14R)=%X —p (13)
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Note that we have to solve in each iteration of the Newton oteth linear
system of equations for the preconditioned gradient vaztor

AP =0 (14)

There are several basic problems with the Newton iteration:

e As mentioned before, itis not clear where to evaluate it fooa-quadratic
form

e Realistic functions are not quadratic forms and so the thesoanyway
only an approximation.

e The calculation of the exact Hessian matrix is numericalty éxpensive
for complicated high-dimensional functions

e The matrix inversion of Eq. 14 is too expensive for high-dmsienal
functions.

Let us therefore define a slightly more general iteration e will call pre-
conditioned steepest descent iteration

Xi1=%X—Pg(x) (15)

whereP is a still unspecified preconditioning matrix. Evidently \get the
steepest descent iteration of Eq. 9 if we But al and we get the Newton
iteration of Eq. 13 if we puP = A~
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Convergence analysis of the steepest descent iteration

For the convergence analysis we will again assume that walagady suffi-
ciently close to the minimum, so that the function is a quadifarm. Because
by definition the gradient vanishes 3} the Taylor expansion of Eqg. 10 be-

comes
1

E(X) —E(wm) = 5 (R—%m) " A(R—Rw)
By shifting the origin (such thag,, = 0) and the function (such th&t(Xy1) = 0)

we can without any restriction consider the simpler case

a@:%fAz (16)

Since the HessiaA is a positive definite symmetric matrix, we can go into an
coordinate systery, that is obtained by applying a unitary transformatidn
on the original coordinate systexnwhereA becomes a positive real diagonal
matrixD = U T AU.

1
() =33 Dkkyk?® :  gk)=Dkkyk  @17)
Things are illustrated in the figure below. The ellipsoidsresent the equipo-

tential lines of the functiorf. The axis of the/ coordinate system coincide with
the principal axis of the ellipsoids.
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Let us now assume that at a certain stage of a steepest déscanon the
current pointX, coincides with the blue dot. Since in this case the gradient
points exactly in the direction of the minimum, we can find th@imum of

this one-dimensional subproblem with a single steepeseté¢step if we chose
a=1/D(1,1). If we are at the green dot the same arguments apply except tha
nowa = 1/D(2,2). In general our current iterations points are not located on
any principle axis. The gradient of an arbitrary point sustthe red dot has
components of both principal axis. In order to guarantee@mence we have

to be conservative and to choose= 1/maxXD(1,1),D(2,2)]. Since the com-
ponents of the gradient that correspond to principal axis small eigenvalues
will be damped too strongly, a steepest descent iterationare than two di-

0-20



mensions is approaching the minimum very slowly by a largalmer of zigzag
moves.

The generalization to more than 2 dimensions is obvious. alr'béa steepest
descent iteration has to be taken to be the reciprocal oftiges$t eigenvalue of
the Hessian. Let us now examine the convergence rate forutiedimensional
case in a more mathematical way. Since the steepest desaetion is in-
variant under unitary transformations of the coordinatteay we can without
restriction consider a diagonal Hessian.

The steepest descent iteration then becomes

i1(K) = % (k) — ad(k)x (k)

whered(k) is the vector containing the diagonal elements of the diagmiatrix

A. Hence
X+1(K) = x¢(K) (1 —ad(Kk))

whereX; is the starting vector for the iteration. Convergence cag ba ob-
tained if|{1 — ad(k)| < 1. Hencea can be at most twice of the reciprocal of the
largest eigenvalue. So let us put

a= t/dmax (18)

wheret is in between 0 and 2. Far= 1, the componerk that will converge
most slowly is the one associated to the smallest eigenvaRexuiring this
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component to be equal to a certain precigogives

(12—t p

dmax

The number of iterationsnecessary to obtain this precisipns then given by

—In(p)/In(1—t M) (19)

dmax

If dm'” Is small, this is asymptotically equal to

| = —In(p) Omax (20)
dmin

The ratio between the largest and the smallest eigenvaltie dtdessian matrix
IS called the condition number= ?jmax We have thus the result that the number
of iterations is proportional to the condition numbein the steepest descent
method. This is a big problem. As we will see the conditiomognber is typi-
cally growing rapidly with respect to the size of the physgstem represented
by the matrix. Hence the number of iterations is growing safigally as well.
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Convergence analysis of the preconditioned steepest deste
iteration

The convergence analysis of the preconditioned steepsstedeiteration of
Eg. 15 is analogous to the one for the simple steepest desestion. The
only difference is that we perform the analysis in a coordirgystem that di-
agonalized?A instead ofA. The number of iterations is consequently given by

the same formula
dmax

I In(p)tdlmin

the only difference being thal,.x and dmin are now the largest and smallest
eigenvalues oPA. If the conditioning number oPA is smaller than o#, the
number of iterations of the preconditioned steepest désnethod will be re-
duced compared to the simple steepest descent method. Avgexxhditioning
maitrix is a compromise between 2 requirements. On the orgtihsimould give

a small condition number, on the other hand it should be easgltulate and
to apply to the gradient. A frequent choice fors a diagonal or sparse matrix.

Topology of preconditioned problem:
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Steepest descent with line minimization

The prescription for a steepest descent iteration with timeimization for a
functionE is formally identical to an ordinary steepest descent mizatnon

Xy1=X —00

The difference is that is not fixed, but optimized such that

0

3 E(X4+0agd) =0

The line minimization ensures that the function will deseat each iteration
point. This does however not imply that one comes as closesslpe to the
minimum. As a matter of fact it turns out that with an optimalue oft (Eq.18)
the convergence is as fast as with line minimization. In &aoldione iteration is
much cheaper without the line minimization. The conclussotiat one should
avoid line minimizations unless one can not at all estimaddrgest eigenvalue
of the Hessian matrix. If this estimation is possible stsedescent with some
feedback is a recommendable strategy.
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Steepest descent with energy feedback

A simple and powerful modification of the simple steepestdatmethod is
the steepest descent with energy feedback. Assuming tadtiictional value
represents the energy, we decrease the stemsiizthe energy rises in an it-
eration, otherwise we increase it. Since we know that in #s®= ©f an energy
Increase the paramete(Eqg.18) is roughly twice as large as would be optimal
for the elimination of the stiff components, associatedaigé¢ eigenvalues of
the Hessian, we decreageby a factor of 2. If the energy goes down, as it
should, we slightly increase (e.g. by a factor of 1.05) to speed up the conver-
gence.

Steepest descent with gradient feedback

In practice one finds that the following feedback gives slighaster conver-
gence than the energy feedback. At each iteration one aasuthe angle be-
tween the current gradient vector and the gradient vecton fthe previous
iteration. If the angle is larger than let's say 60 degreles,step sizex is de-
creased by a factor of/2, otherwise it is increased by 1.05. In this way one
avoids that consecutive gradients are pointing in oppairections, which is
obviously not desirable for a fast convergence.
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Exercise An Lennard-Jones cluster is some artificial system wher&atbens’
Interact through the Lennard-Jones potential. The pot¢mtnergy E of such a

cluster is . .
SRR RICE AR
Zi S URRE TR RP

Equilibrium geometries are given by minima of the poterdgiargy. Minimize
the energy to find an equilibrium geometry using the steegestent method
with energy and gradient feedback. will turn out to be of the order of 1.d-
3. Which method is more efficient? The subroutine lenjon(#®ailable on
http:/comphys.unibas.ch/teaching.htm) can be used tutzk the energy and
forces (= negative gradient) of a Lennard-Jones cluster #ralfile posinp.xyz
(on same website) contains the coordinates of the lowesgnkister contain-
Ing 38 atoms. Displace the atoms slightigm the geometry given in this file
and use either one of the above mentioned minimization mgthOf course,
one should in this way regain the coordinates of the clusténe file posinp.xyz.
If the atoms are strongldisplaced one might however fall into another local
minimum. The format of the file posinp.xyz is by most visatadiz programs
such as wsim software provided at http://www-drfmc.cea.fidim/\.Sim/ The
first line gives the number of atoms, the second is empty @&a@thaining lines
give the atom type followed by its X,y and z coordinates.
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The conjugate gradient (CG) method

Eqg. 11 tells us that finding the minimum of a quadratic formasiigalent to
solving a linear system. The (preconditioned) steepestesiéanethod can
therefore be considered as the simplest method for solvimgear system of
equations. There are however more powerful methods. Onseaibst pop-
ular methods is the conjugate gradient method. It is basedl lmrorthogonal
sequenc@, h;

g' dj = Zgi(k)gj(k) =i |
h' Ah; = ;hi(k)A(kvl)hj (1) =6i,;

Solving the system of equations
AX =Y

Is easy In the space spannedhp$. Writing X =} ; CjF\j one obtains
Z Cj AF]J' =Y
]

Multiplying from the left byh; one obtains
Z CjF]iTAF]j =C = E,Ty
]
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In implementations of the conjugate gradient method onamilsaneously
generating the bi-orthogonal sequence and then updatengghroximate so-
lution X. For am dimensional matrix there are at maestnon-zero vectorﬁi.
Therefore the exact solution has to be found after at mogerations. This
property is sometimes stressed in mathematics books. khwever not the
property that makes conjugate gradient so useful in pmbecause

e |t only holds for linear systems, whereas in practice thgugate gradi-
ent method is usually applied for minimization problems wetie func-
tion is not a quadratic form.

e Even for linear systems, it is violated in finite precisiomranetic be-
cause of rounding errors

e miterations are far too expensive for large matrices

What makes the conjugate gradient method superior to tlepese descent
method is its faster convergence rate. It can be shown teatdmber of it-
erationd is

| 0K

Instead of Eq. 20. For badly conditioned systems a lot cas beugained by
using the conjugate gradient instead of the steepest desmthod, for well
conditioned (or preconditioned) systems not much can beegai
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Generation of bi-orthogonal sequence
Here is the conjugate gradient formulation for the minirtima of an arbitrary
functionE. Given an initial input guesg, we calculategy = LE(Xy) and put

ho = Jo.
Consecutive steds

e Determine by a line minimization the, that gives the lowest energy.
That is usually done by finding the point where the derivatiarishes.

0 S
a—alE(% —|—CX|h|) =0

e Update the solution B
Xr1=X+ah

e Calculate new gradient

O+1=0UE(X 1)

e Calculate newn ) )
Nit1=0+1+Yh
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where (Polak Ribiere)

(@+1—0)"9+1
g/ i

y:

For the case of a quadratic function one could simplify thalP&ibiere for-
mula by using the orthogonality of the vectdlis However it turns out that
for a general function where the orthogonality of the vexgpis not any more
satisfied, the above Polak Ribiere formula is more stable.

CG assumes that we are in a quadratic region. This is frelyueat the case
at the start of a minimization procedure. In this case st&egpescent with
feedback is the method of choice. The CG will usually divarga strongly
non-quadratic region.
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The Newton method

Even though the Newton method is not widely used for findingima we will
discuss it in more detail since its practical implementatgvery similar to the
very useful preconditioned steepest descent iterationet3s assume that we
know the Hessian matri&(x) at a pointx together with the forcé(x). We can
diagonalize this Hessian matrix to obtain its eigenvaldieand eigenvectors
Vi using standard routines such as the routine DSYEV from LARAThis
routine overwrites the orginal matrix with all the eigenes. Each column
of the matrix contains one eigenvector. The eigenvaluegtadorresponding
eigenvectors are in increasing order. We have now to tramstioe force in the
new coordinate system spanned by the orthogonal set ohagems. For this
we have to calculate the coefficiemfs

g = (flvi) = Zf

wheref () is the j-th component of andv;(]) the j-th component of;. g; is
thei-th component of the force vector in the new coordinate systgince we
are now In the principal axis coordinate system we can nuleach compo-
nent by the ideal stepsize which is the inverse curvatumeceSihe curvature is
given by the eigenvalues we have

0i = 0i/Ni (21)



Then we have to go back in our original coordinate system tdhgeprecon-
ditioned forcef. The vectorf is what one would obtain by applying—! to
f:
=> Givi (22)
|

Finally we update the atomic positions according to
R+ R+f

Since the energy is invariant under translations, the ldassiatrix has three
eigenvectors with zero eigenvalues and is thus singulancela—! does not
exist. Numerically the eigenvalues are not strictly zeroumry small. These
nearly zero eigenvalues can lead to problem in Eq. 21. Utiessystem Is In
the field of an external potential the overall translaticioate has to be zero
and so the three componefs) that correspond to the translations have to be
zero. Analytically we have thus three cases in Eqg. 21 where ®edivided
by zero, in numerical work we will just divide two very smallimbers. Since
these numbers are essentially rounding noise the resulidwiicompletely
wrong. For a molecule at equilibrium it can be shown thatdlsae three more
zero eigenvalues that correspond to rotations. If the nutdas close to a locall
minimum the three eigenvalues are not exactly zero but vaallsvhich will
lead as well to numerical problems. To avoid such problembave to modify
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Eq. 21 to .
~ I
9= x oy (23)
and this value of§(i) has then to be used in Eq. 22has to be chosen such that
the denominator is always positive and not too small. In #eeof a molecule
or cluster, a good choice faris to set it equal to half of the 7-th eigenvalue.
The practical implementation of the Newton method is vemilgir to the
preconditioned steepest descent iteration. The mairreifte is that in the pre-
conditioned steepest descent method one uses an appreiassian instead
of the exact Hessian. Approximate Hessians can also hawveergenvalues
which have te be treated in a similar manner as in the Newtdhade
Exercise Use the Newton method to find equilibrium geometries of the 38
atom LJ cluster of the previous exercise. Show that the cgemee rate is much
faster than with the steepest descent method. A routing.f@3¢hat calculates
the Hessian matris is available on http:/comphys.unibd@geaching.htm.
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Quasi Newton (QN) methods

The basic principle of qguasi Newton methods is to build uprnmfation about
the Hessian matrix from the gradient evaluations duringnim@mization iter-
ations. This is possible because the Hessian matrix (Eqedlpe obtained by
finite differences from the forces or gradients

AR) = ( R +he)-gR) . gRhe) GR) . . g(R+hen) gR) )
Denoting byG; the finite difference vector between the two gradients
Gi =9g(R+he)—9g(R) we see that the matrix elemeft; is given by the scalar
product%(Gi 'ej), whereg is an orthonormal set of vectors. Now very similar
guantities are a by-product of any minimization. If the systis moved in a

minimization step fronR to R 4+ d and the forces are evaluated at both points
we can calculate the curvature along the directon

0° 0 (G(d)[d)
W E(R+Xd)‘x:o_ a_X <g(R+Xd)‘d>|x:ON <d|d>
where we have again denoted Gythe difference betwenn the gradient vectors
G(d) =g(R+d)—g(R). If we assume our functiok to be a perfect quadratic
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form thenG(d) is equal toAd. The Hessian matri8 with respect to an non-
orthogonal set of vectord; is then given by

Bi j = (di|A[dj) = (G(di)|dj)

The eigenvalues of the Hessiarcan consequently be obtained by solving the
generalized eigenvalue problem for the matriBendS

Bvi = A\ Sy (24)

whereSis the overlap matriXg ; = (dj|dj). This approach clearly fails if the
vectorsd; are linearly dependent. Numerical problems actually dyeaise if
the vectordd; are nearly linearly dependent, i.e if the overlap matrixaeany
singular, which can be detected by very small eigenvaludssobverlap matrix.
Standard Quasi Newton methods such as the popular BFG3t/aréaned after
their inventors Broydens, Fletcher, Goldfarb and Shanan,tberefore fail in
such cases. Linearly dependent vectors can be encountdénedmninimization
Is started far away from the local minimum. If the minimiztietarts close to
the local minimum where the function can be well approxirdditg a quadratic
form such problems do generally not arise and rapid convese generally
found. The most popular implementation of the BFGS methdded.imited
memory LBFGS variant where second derivative informatsaxploited only
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from the few last iterations. Typically a history length dfoaut 10 is choosen.
Even if the dimension of the entire Hessian matrix is in gaharuch larger
than this history length, it turns out that the convergemeeed is not improved
by a longer history. On the contrary, a too long history cale®o numerical
Instabilities.
Exercise Extracting curvature information from a set of gradient toes
Take the local minimurRg of the 38 atom LJ cluster of the previous exercise
and calculate the Hessian matrix at this point using the subne hesslj.f90 (on
web site http:/comphys.unibas.ch/teaching.ntm). Fireddigenvalues of this
matrix by using the LAPACK routine DSYEV. Six of these eajaas should be
zero corresponding to the three translations and the thatations that leave
the energy invariant. These eigenvalues will serve aseafax values for the
second part of this exercise.

In this second part, first perturb this minimum by a randonpkisement

ro=Ro+ad

whered is a random vector and the amplitude a should be about 1.eéh-G
erate then a sequence of configurations = 1, ..., n, by performing a steepest
descent geometry optimization with a energy or gradiendldaek. Consider
then the sequence of displacement veatiprs

di =ri—ri—1
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Use at each configuration the corresponding forcg to obtain the gradient
differenceG;
Gi = —(fi —fi-1)

Calculate then the overlap matrix S= (di|d;) and the Hessian matrix in this
basis, B = (Gi|dj) for several values of n. For a purely quadratic form the
Hessian matrix B would be symmetric, i.¢jB= B;;. Since this is not the
case there will be small deviations from symmetry. Checdkttiese deviations
get smaller if the initial displacement amplitude is reddiceNext calculate
the eigenvalues of the generalized eigenvalue problem oR&£dpy using the
Lapack routine DSYGV. Verify that you get for small values afready with
reasonable precision the large eigenvalues of the full kbesmatrix and that
all the eigenvalues lie within the spectrum of the full Hassnatrix. Verify that
once n gets larger numerical instabilities arise which @etvobtaining all the
3 x 38 eigenvalues of the full Hessian matrix correctly.
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The DIIS (Direct Inversion Iin Iterative Subspace)
minimization method

Be Cp the exact solution of a quadratic minimization problem &n@=1, ..,m)
a set ofm approximate solution vectors. Their error vectors are edfiny

émzém—éo

B m
Cn = i;di G

| 5m was the exact solution, it would fulfill

idiéi = Co

idi(éoJré) - &
iidiéoJri_idié =
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This Is satisfied if

-idi =1 ; -idié =0

Last condition can only be fulfilled approximately, leadtoghe minimization

problem
min [<.idia | -idia >]

under the constrairg" ; d = 1. This leads to the system of equations

(e1ler) (eller) ... (erlem) 1 q 0
{ (eole1) (ep|&2) ... (ex]em) 1 \ ( d; \ { 0 \
(25)

. 0
(emler) (emle2) ... emIem dm 0
\ 11 o)\dnm) \ 1)

In practice the error vectors are approximatedby: PG
The new vector is then given by

ém = Uf (6m)
6m+1 — 6m — Pém
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Variable preconditioning DIIS implementation

There are possibly two preconditioning matri€es P, andP = Py, that depend
on the iteration stem.
At th m-th step do

Gm = Of (Cm)
éi :ngi , i:].,...,m

e Solve Eqg. 25to geﬁm = yi",diC Under the assumption that we are in a
guadratic region, the coefficiendisallow us then also to calculate

Gm = Of (Cn) = Df(idiéi) — idin(G) — idi@

6m+1 — 6)m — If’mém

This implementation requires to store 3 sequences of \&@og; andg,. If the
application of the preconditioning matrb, is cheap th&’s can be calculated

on the fly form thej;’s and one does not have to store them. The most expensive
step is usually the calculation of the gradigpt, which has to be done once
during each iteration.
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Fixed preconditioning DIIS implementation

Only the two sequenceas, andé,, have to be stored if there is a single precon-
ditioning matrixP that does not change during the iterations.
([

gm — Df(6m>
€m = POm

e Solve Eqg. 25to0 geﬁ‘m = v, diC Under the assumption that we are in a
quadratic region, the coefficiendswould allow us then also to calculate
dm, even though we do not actually calculate it

Om = Of (Cn) = Df(idiéi) — idin(G) — id@i

Cmi1 = 6m Pgm— Zd iGi — PZd i0i = Zldl Pgl Zl (6i —éi>
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Steepest descent versus CG, QN and CG

Both CG, QN and DIIS assume that we are in a quadratic regidms i$
frequently not the case at the start of a minimization praced In this case
steepest descent with feedback is the method of choice. BGtN and DIIS
will usually diverge in a strongly non-quadratic region.€llme minimization
makes the CG however somewhat more stable than DIIS.

QN and DIIS versus CG

The DIIS method has the advantage that it is the most flexiBien though
there is also a preconditioned version of the CG method tisen® precon-
ditioned CG method that would allow for variable precorahing. An initial
Hessian which can be considered as a preconditioner carbalpoovided in
the QN methods. However if this Hessian turns out to be inaateqgthe iter-
ations done so far have to be discarded for building up in&dion about the
Hessian. Since the set of approximate solution vedgm the DIIS method
Is arbitrary, the the DIIS method can be applied to a comstchminimization
problem. Imposing constraints after each iteration maoslifiee sequence of
approximate solution vectors generated during the immatand would be il-
legal in the standard CG and QN method. In the DIIS method smgpthe
constraints does not bother. The disadvantage of the DIlBodecompared to
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the CG method is that it needs more memory to hold the set abrseG and

&. If memory is limited, the sequence of vectors can be rdstfito a certain
maximum value. Like in the QN methods such a limited histength does not
negatively affect the performance. Another advantage tf bee QN and the

DIIS method is that it requires only a single force evaluafer step because
no line minimization is required.
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Least square problems: The Levenberg Marquart method

In the case of a least square fitting problem, the Hessianodae solution can
be obtained easily from the gradient vectors as will be shiovthe below. The
only reason not to use information about the Hessian wouldhdteone is still
far away from a quadratic region, where some steepest despenmethod Is
more stable.

The penalty functiorx to be minimized is by definition given by

x%(a) = ii (Yi —3c/y(ixi;a) ) 2

for a nonlinear fiting problema is a vector of lengtiM containing the fitting
parameters of the functionto be optimized and thd data of the fitting data
base are denoted Ijy;,y;). The gradient is given by

2

_ZZyl Xl’ ay );ka)

and the Hessian is given by

o (22 s
0203y Zloz day, 04

0%y(x;a) )

— (i —y(xi;a)) Sa0a
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If the fit succeeds to reproduce the data perfegily, y(x;; a) tends to zero and
the second term in the formula for the Hessian vanishes. ¢fr@acHessian can
be obtained purely from gradient information.

In the Levenberg-Marquart method one uses now a preconghganatrix which
IS given by

N1 oy(x;a) ay(x;a)
4 o2 Oda  Oa

H<7| = -2 +)\6k,l

If A is zero the resulting iteratioa < a— Pg will be identical to a Newton
iteration close to a perfect fitting solution. For very langgues ofA the the
iteration will coincide with a steepest descent iteratiathva very small step
size of approximately AA. In the Levenberg-Marquart the valueloils adjusted
by a feedback loop to be close to optimal. One starts withleerdarge value
of A such that the first steps are steepest descent like. Therathe of A
IS reduced to come closer to the more efficient Newton it@natilf the A is
however too small large steps can be taken and these stebsmotdoe correct
because the preconditioning matkxs not the exact Hessian. In this case the
valuex? will increase and then a feedback mechanism will again aszdahe
values ofA. This is very similar to the steepest descent iteration witbrgy
feedback that was discussed previously.
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Saddle points

In addition to the local minima of the total energy functitve saddle points are
also of interest. Their height and shape determines thendigisaof a molec-

ular system. Within harmonic transition state theory one ahbtain the rate
of a chemical reaction from the properties of the saddletpdiet us look at

the simplest chemical reactiohl + H, — H> 4+ H, whose energy function is
sketched below as a function of the two distances betwedmyiii®gen atoms.
We assume that the 3 atoms all move along a line.

O Y e,

W

|

R12 4 X 0.5
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In realistic cases the total energy function is a very highatfsional function
that can not be visualized. For this reason one introduaesdkcalled reaction
coordinate and plots the energy as a function of this reacioordinate.

Free energy

Transition state

Local Minimum B
Product

Local Minimum A
Educt

Reaction coordinate

The reaction coordinate consists of the two path that on&mdbtf one starts a
steepest descent minimization from the saddle point gadightky in the direc-
tion of the two minima connected by the saddle point. Evenginathe transi-
tion is a saddle point on the high dimensional total energfasa it becomes
a maximum along the reaction coordinate. The height of tmedraneasured
relative to the educt is called the activation energy. Weeh@utted the energy
along the reaction coordinate and so the barrier height enangy difference.
In reality one should consider the free energy and in treomststate theory
the activation energy is actually a free energy. In mostsdse pure energy
contributions are however more important than the entrapyrdoutions.
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Rare events

Since the time step in MD is very small it is not possible tddal events that
take place on time scales of a micro second or more. Eventdaka place
very rarely on the time scale of molecular vibrations ardecalare events.
Doing MD to observe such a rare event would be boring. Essgntine would
observe endless oscillations around a certain local mimrmtithe total energy
surface until all of a sudden the event takes place. Whenvinat &akes place’
the MD trajectory goes over a barrier into the bassin aststia another local
minimum. In the language of chemistry such an event is ug@atthemical
reaction. The initial minimum corresponds to the educt efdchemical reaction
and the final local minimum to the product of the chemical fieac In physics
such an event could for instance be the annihilation of acti@fea crystal. The
initial local minimum corresponds to a crystal containingtable defect and
the final local minimum to the perfect crystal. What one wolike to know
for rare events is how frequently they happen on average.useenote this
average time by. In this way one knows for instance the rate konstaat a
chemical reaction which is simply/t. Harmonic transition state theory gives
an approximate formula fde

K= —exp(—=) (26)
wherekg is Boltzmann’s constant, Plank’s constant;, the activation energy.
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Finding saddle points

Finding saddle points is more difficult than finding minima. the latter case
one just has to go downhill whereas in the former case onedgs tlownhill
along certain directions but uphill along other directiofi$ie direction along
which one has to go uphill is the direction with negative etiave. Determining
this direction requires finding the eigenvector of the Hassnatrix that has a
negative eigenvalue. Calculating the Hessian matrix i@ty rather difficult.
Except for simple model potentials such as the LJ potertigdm not be cal-
culated analytically but only numerically at rather higlstof computer time.
For the moment let us assume that the Hessian matrix is biaila

The topology of a saddle point of a 2-dim function is shown loa mext
side. The surface is already aligned such that the prinixal @incide with
the x and y axis. Along the x axis the curvature is 1, along th&ig it is -1/2.
The left hand side of the figure shows both the surface anddh®ur lines
In the x y plane. The right hand side shows only the contowgslitogether
with the force (black arrow) at a certain iteration of ourdliadooint search. As
expected the force does not point in the direction of the leguluint. Like in the
case of Newton’s method we have to decompose the force satmmponents
along the principal axis (dotted arrays). The componemalhe component
with eigenvector 1 is not modified since the optimal step fmrecurvature 1
Is 1. The component along the eigenvector with eigenvallfislmultiplied
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by -2. The negative signh comes from fact that we want to golugloing this

component and the value of two from the fact that the absolalge of the

curvature is 1/2. Adding together the scaled componentssgm vector (red
arrow) that points towards the saddle point.

10
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The obvious generalization to higher dimensional problerse following.
To find a first order saddle point, i.e a saddle point where ayengalue of the
Hessian is negative and all other are positive we have tode@sbmpose the
forcef into the components; of eigenvectors of the hessian matrix. Denoting
the eigenvectors by, we have

= (flv;) = Zf

Then we have to scale each component by the curvature takmgacount that
we want to go downhill except along the component with thelsitacurvature.
This is achieved by scaling the first component as

d1 = —C1/‘)\1| (27)

and all other component as
di = ci/|Aj| (28)

Close to a first order saddle point there will always be onatng eigenvalue.
Far away all eigenvalues may however be positive. Takingliselute value of
A1 In EQ. 27 ensures that one also moves uphill along one modiesibanval-
ues are positive.

In the case of finding saddle points we encounter the sameégpnods in
the case of finding minima with the Newton method. Transtaéind rotational
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modes have eigenvalues that are zero or close to zero. Ihadsiome modes
can be close to zero ’by accident’ if an eigenvalue changgs during the
saddle point search. Analogeous to the case of the Newtommmation we

therefore have to modify again Eq. 27 and Eq. 28:

C1

di — —
. A1|+Yy

(29)

and all other component as .
- i
IERY

After having scaled the different components we have torasiethe precon-
ditioned force vectof (shown by the red arrow in the above figure)

f: Zdivi
|

Finally the atoms are moved according to

d (30)

R, %Ri—kf

Iterating the above described steps leads into the saddie po
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Exercise Saddle points in the LJ 38 cluster

Implement a subroutine that finds local minima by using thethie method.
A subroutine hesslj.f90 that returns the Hessian matrixLidisystems can be
downloaded from http:/comphys.unibas.ch/teaching.hffo. diagonalize the
Hessian matrix use the DSYEV routine from the Lapack librémytest your im-
plementation of the Newton method take the global minimumd@reviously
and displace the atoms randomly by .1 units. The convergexteeshould be
considerably faster than with the steepest descent method.

Using as a starting point the Newton geometry optimizatautine, write next
a routine that can find saddle points. Use this routine thefind several sad-
dle points that lead away from the global minimum. Save intemdto the
coordinates of the saddle poiRkqq1ethe direction along which the curvature
IS negativeDneg Which Is the eigenvector belonging to the negative eigemval
Plot the energy along this direction, i.e. plot the function

f(s) = E(Rsaddlet SDneg)

For each of the saddle points found, determine next whicmimai it connects.
To do this use the two poinEsagdiet SoDneg @S a starting point for a steepest
descent geometry optimisation. Finally collect all theulesto plot the energy
along the reaction coordinate.
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Finding negative curvature modes without diagonalizing tle
Hessian matrix

The method to locate saddle points presented in the presexisn is concep-
tually simple and efficient in the sense that only a relagnsrhall number of
number of iterations steps is needed to find the saddle pOme single itera-
tion step is however in practice typically too expensivesithe calculation of
the Hessian matrix is required. If finite differences areduskleast 6l force
evaluations are required to calculate the Hessian mattixetipproaches that
are applicable on the density functionla level require ailammumerical ef-
fort. Fortunatley the eigenmode with the lowest (in our gasgative) curvature
at a pointR can be calculated by an alternative method, the dimer method
that requires in most cases a much small number of force &vahs. The
dimer consists of two physical configuratioRst- %d andR — %d that are sep-
arated by a given small distande If one minimizes the sum of the energies
E(R+ %d) +E(R— %d) with respect tal under the constraint that the distance
d be constant, the vectarwill align along the mode with the lowest curvature.
Since the poinR is fixed we can alternatively also consider the expression

3 (ER+ 30— 2E(R) +ER-30)) @)

for the minimization which represents a finite differencetfee second deriva-
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tive. The Taylor expansion of the first term in these energg gives

1 1
E(R+ éd) ~E(R)+ (d|g(E(R)) + §<d\A|d>
Doing the analogeous Taylor expension E(R — %d) and inserting both of
them into Eq. 31 gives

1 1
E(R+ Qd) —2E(R)+E(R— id) ~ (d|A|d)
Minimizing %<d|A\d> under the constraint of a fixed Ienggjd\d> = constis
by definition identical to finding the eigenvector assodatethe lowest eigen-
value as can for instance be seen by adding the constraimtawiagange pa-
rameter\ to the condition that the constrained gradient be zero:

Ad—-Ad=0

The Lagrange equation is also the basis for a numerical naaton of the
energy in Eq. 31. The gradiegts given by

(d]Ald)

didy °

g=Ad -
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As usual, following the Langrange gradient conserves thesttaint only to first
order and therefore an explicit renormalization of theahse is required after
each update in any minimization method.
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Quasi Newton methods to find saddle points

We have seen how an approximative Hessian matrix can belgquiicom finite
differences of the gradient vectors in a Quasi Newton mination. We have
also seen how the lowest curvature directions can be fouraddmger rotation
without the need to calculate and diagonalize the Hessianxnd hese two
Ingredients can be combined to obtain a very efficient metbddcate saddle
points. In this method dimer rotations are alternatinglsfqrened with transla-
tions of the dimer center. The gradient vector is decompasedch iteration
Into the component parallel to the dimer and its orthogooatgiement. The
step size along the parallel direction is, in the usual wasergby the inverse
curvature. Near a saddle point this curvature will be nggatind in this way
the parallel component will be inverted. If one is far awaynfirthe saddle point
where the lowest curvature mode might be positive the padirt is explicitly
iInverted to avoid ending up in a minimum. The orthogonal congmt is pre-
conditioned by the approximate Hessian obtained duringté@ous iterations
from the differences of the gradient vectors. If the dimdation was tight
enough to find the exact lowest curvature direction and ifQuasi Newton
Hessian was identical to the exact Hessian, this presoniptould be identical
to the operations given by Eq. 27,28 for the Newtom methodr#atice both
guantities are only approximate which is however sufficieptractice to obtain
fast convergence at greatly reduced cost compared to a Nemathod.
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Noise in Quasi Newton methods

The standard formulas from calculus tell us that the ddvieat’(x) can be
obtained as a finite difference of the neigbhouring funaloraluesf (x+ h)
and f (x) and that the error is proportional kpi.e.

f'(x) = (f(x+h)— f(x))/h+ O(h)

Whereas in the analytical formula the error from the finitféetiénce decreases
with decreasindn this is typically not the case in numerical work. If the func-
tion f(x) is evaluated numerically it is always contaminated by nadigethe
numerical evaluation does not retufr(x) but f (x) + o(x) wherea is the noise.
Usually o(x) is much smaller tharf (x) and mo problems arise. If one take
however finite differences of two very similar functionalwas (very small h
In our example) problems can arise. | the difference in timetional values is
much less than the noise level then

f(x4+h)+0o(x+h) — f(X) —0(X)) ==~ o(x+h) — o(x)

and the finite difference can give completely wrong valuestiie derivative.
Exactly this scenario applies if Hessian curvature infdromais obtained in a
Quasi Newton method from finite differences of the gradiefise to conver-
gence. In this case the gradient is approaching zero andadise fevel can
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be comparable or even larger than the norm of the gradientsneXcal op-
timization clearly becomes impossible and meaninglesfiéneixtreme case,
where gradients are completely dominated by noise. Thengation pro-
ceudre should therefore contain some diagnostic toolgdicagnize when the
noise level becomes so important that the optimization gaace should be
stopped. The negative effect of a moderate noise level careVer be attenu-
ated by a noise elimination process as described in thenfimltp

The figure below shows a set of vectet®. The similar vectors represent
noisy forces. So without noise they would be identical. Lethow consider

I-dimensional subspace 2-dimensional subspace

a) b)
1.5 [ I . I . I I I ] 1.5 [ I . I . I I I |
noisy displacements —p noisy displacements —p
significant subspace ----p» significant subspace ----p»
1+ = 1+ .
E 05} / 4 B 05} i}
= =
g g
s 0+ . S 0 .
05+ & . 05 * |
-1 I I I I I -1 I I I I I
-1 05 0 05 1 -1 05 0 05 1
arb. unit arb. unit
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linear combinations of these vectorss

W=qu
Zﬁzl

If we take nearly identical vectoks that differ only by some noise, then we can
obviously form a vectow that is very short. If on the other hand the vectors
are different and in particular if they are orthogonal, wa oat obtain a short
vector by a linear combination of them. The longest and sisoutectors as well
as vectors of intermediate length can be obtained in a matteatly rigourous
way by diagonalizing the overlap matr&given by

S.j = (vilvj) = ZVi(k)Vj (k)

under the constraint that

The eigenvalueay of the this matrix are the squared lengths of the linear com-
binations of the original set of vectovs and the corresponding eigenvectofs
the expansion coefficients

Wk = ZC}(VI
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with
(Wi|Wk) = Ak

So vectorswy with short length are essentially linear combinations ayo
forces. By excluding these vectors on can generate a subspémver dimen-

sion. This subspace, shown by the blue vectors in the figureealvepresents
then the significant subspace within which a subspace Hesarabe build up
with confidence using the Quasi Newton method.
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Two sided saddle point mehods

The modified Newton method presented in the previous seessaomes that
one has an initial structure which, ideally, is close to adéagoint. It will then
converge to this close by saddle point. Methods of this typecalled one sided
methods. Frequently one has however only two local mininthare has no
good guess for an approximate saddle point. So-called mlemsnethods can
In this case find the saddle point connecting the two minimawvidely used
method is the nudged eleastic band method. It is a refinenfdhesimple
iIdea to span an elastic rubber band from one minimum to ther aver the
potential energy surface. The potential is evaluated at@mtain pointR; on
the elastic band. Thedepoints are called images. Mathematically this gives
rise to an object function defined as

f(R07R17° %V IQI —I_Z IQI 1

The force acting on imagas then given by
F=-OV(R)+F

where
F°= —k(Ri11—Ri) +k(Ri —Rj_1)
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As shown in the figure below this method has a serious shomgpnin the
region close to the saddle point there is a corner cuttingsartie saddle point
IS not on the band and significantly lower in energy than tighést point along
the path. This corner cutting can be reduced if the springtemrk is reduced.
But in this case the two images bracketing the saddle poihbe/pulled down
too much by the action of physical force.

4 .
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These problems can be cured in a simple way. From the phyeita one
uses only the component perpendicular to the band and frermal#éstic spring
force F= only the parallel component

F=—0OV(Ri).+F
where i
and i
(V(Rj), =0OV(R)) —OV(Rj) -ttt

t is the unit tangent vector to the band. Obviuously this tahgector is nu-
merically only well defined if there are many images alonggat, i.e if their
distance is short in which case on can either put

Ri —Ri-1

t
IRi — Rj_1]

or
Rir1—Ri

IRi+1— R
The nudged elestic band method requires as an input guese athages
which specify the path along the band. This can actually bambst difficult

t
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part in practice. One possibility is to do a simple lineaemblation between
minimum A and B. However it is in principle unknown which atahconfig-
uratioon A maps onto which atom of configuration B. If this mig is not
optimal very high energy path can result which miss the tagdke point. If
If the mapping is correct a linear interpoation can also leasome very high
energy configuration where for instance some atoms comecl@sg. This can
therefore lead to convergence problems if the poetntarggr&urface is calcu-
lated within density functional theory. As a matter of faaing saddle points
wth two sided methods is nowadays still a problem for whichmethods exist
which could do the job in a fully automatic way.
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Global geometry optimization

The minimization methods discussed previously such aséepest descent or
conjugate gradient method can be used for local geometmnaitions. In a
local geometry optimization you fall into the local minimubmat is closest to
your starting point. Because the condition number of thestd@sis frequently
bad, the convergence of these methods can be slow, but Inetesd it is guar-
antueed that they will finally find a local minimum. Findingetglobal mini-
mum of the total energy function is a much more complicatedi@m. There
exists no algorithm that will find the global minimum with ¢&anty within a
computing time that grows less than exponentially with eespo the system
size. Systematically exploring the high dimensional spgoapossible in prac-
tice. Covering it with a grid om points in each direction would requirgNet
grid points because the dimensionality of the Born-Oppenéesurface of a
system ofNy atoms is Bly. In spite of the mentioned theoretical obstacles
there are however algorithms that can find the global miniflmmmoderately
complex systems within acceptable computing time. Thisisstd the fact that
many local minima are frequently grouped together in futikelstructures (as
discussed previously) where many algorithms rather edsily down in the
minimum at the bottom of the funnel. If this minimum at the toat is the
global minimum one has succeded, if not the algorithm ha®taldbe to climb
out of this wrong funnel. This is the difficult part where maalgorithms fail.
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Genetic algorithms

Genetic or evolutionary algorithms try to mimic the Darveitnc evolution to
solve global optimization problems. The principle is thevstal of the fittest’
and genetic algorithms are for instance using steps thabdiegl mutations and
crossovers. The basic quantity is a population of indivisltizat are represented
by their genes. Numerically these genes are binary striagsutation consists
of a random change of a gene, i.e. of a flip of one or severakdbitls in a gene.
It is thus similar to a trial step move in a Monte Carlo meth@éhat is really
new compared to Monte Carlo methods is the concept of gessavers. Given
two genes of two individuals a crossover point is first deteaa at random and
then the genes are combined as shown below to obtain a child.

100111100 Imother gene’

101100011 1father gene’

100100011 ZIchild gene’
Gene crossing makes only sense if neighboring genes deteegommon func-
tionalities. This can be easily seen by going back to biald@yor instance
In the example above, the first 4 genes encode the functiprdilear and the
last 6 the functionality of the eye, then the child has a aethance having
both good ears and a good eyes assuming that the mother hddegmand

0-67



the father good eyes. If however the first 5 genes determaedhand the last
five the eye then the above crossover after the fourth bitweny likely result

In both ears and eyes that do not work very well.

After performing the operations of mutation and crossowsrsa population
comes the final survival step. The fitness of each individuneh population that
may consist of parents and children generated by both motéind crossovers
IS measured by its fitneds which would be in a physical problem for instance
the negative of the energy of a configuration. The averagestiof our popu-
lation < f > of N individuals is given by

1N
<f>=— fi
N

The survival rate of an individual is then proportionalffg < f >.

Repeating the processes of mutation/crossover and sugwes fitter and fit-
ter populations and the hope is that finally a population magmtain a 'per-
fect’ individual, which in the mathematical language wobklthe global max-
Imum/minimum.

Applying standard genetic algorithms to structural opziamion is problematic
for several reasons. First, it iIs unnatural to represemh@&t@ositions by short
binary strings. A continuous problem is in this way mappetbandiscrete
problem. Second it is not quite clear how to do the crossavemi efficient
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way. In order to optimize the structure of clusters, peo@eaised a crossover
process that is not based on binary strings but simply coesitime parts of two
clusters as shown below.

Genetic algorithms based on this geometric crossover mehavork well for
clusters that have icosahedral ground states but are notagp for finding
more complicated ground state structures. For periodicires it seems to
be much easier to come up with efficient crossover and mutatioves and
evolutionary algorithms work very well and have alreadypwkd to discover
many interesting new materials.
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Simulated annealing

Simulated annealing is based on thermodynamics. At a srffigi low tem-
perature the system will be in the ground state, i.e. In tlebdal minimum
€o of the potential energy surface since all other mingnhave a Boltzmann
weight exg—p(gj — €g)) that is vanishingly small. The Eliminating noise in
Quasi Newton methodimplex simplest implementation of $ataad annealing
IS based on molecular dynamics. The system is propagated d&wton’s
equations of motion. Ergodicity ensures that the thermadyn Boltzmann
distribution is finally reached. Molecular dynamics basedutated anneal-
Ing Is thus imitating what is happening in nature during astaiization pro-
cess. While the system is slowly cooling down the atoms maeeraing to
Newton’s law and find finally the global minimum, which is therfect crystal
structure. One is thus only left with setting up a presaniptior the cooling
rate. The simplest cooling recipe is just to impose an expigledecrease
of the temperature. A template program implementing thrgosest simulated
annealing method is shown below. Some values (4.d0, .999@jl@re just ex-
amples and other values may be more appropriate in othegxdsntt has to be
stressed that there is no guarantee that the global minimillrhenobtained at
the end of the run. Frequently the trajectory gets trappedhar local minima,
l.e. it has not enough energy to go from the present minimuer avbarrier
Into another local minimum. One should therefore do many nith differ-
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ent initial atomic positions and different parameters befine can state with a
certain confidence that one has found the global minimum.

read initial atomc positions and calculate initial forces

ref kin=4.d0
1000 continue
ref kin=ref kin*. 99999
i f (ref kin.le.1.d-3) goto 2000

DO A VELOCI TY VERLET MD STEP AND CALCULATE THE KI NETI C ENERGY act _kin

I f (act_kin.gt.ref _kin) then
reduce velocities by a factor of .99d0
el se
i ncrease velocities by a factor of 1.01d0
endi f
goto 1000
2000 continue

wite final atomc positions
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The thermodynamic approach to the global
minimum search

e Basic idea:
A Monte Carlo algorithm is used to generate a thermodynanaitzB

mann distribution. At sufficiently low temperature the gndustate con-
figuration will be the dominant configuration.

e Problem:
Thermodynamics does not tell us how fast the thermodynaaqudile-

rium distribution is obtained

— Monte Carlo works fine for funnel like landscapes

— Monte Carlo is not efficient if the landscape consists of sEven-
nels: system remains trapped in a 'wrong’ funnel
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Trapping in Monte Carlo

Because of the Boltzmann factor €x{3(Enew— Ecurrent)) all moves that try to
escape from a basin or (wrong) funnel are rejected at low ¢eatpres
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______

—————

—

Original pot. energy surface
| Basin hopping pot. energy surface

_————n

______
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Minima hopping algorithm

The minima hopping algorithm combines the local geomettynmpations ap-

plied in several other methods such as in genetic algorithmnimsin hopping

with the molecular dynamics based moves found in simulateegaling. Be-

cause both local geometry optimizations and molecular auiyceacan be per-
formed for nearly any system is is applicable to virtually aolid state system
such as molecules, cluster, proteins and crystalline sollavo basic features
are mainly responsible for its high efficiency:

e |t exploits the Bell-Evans-Polyani principle, i.e. it m@/&om one mini-
mum to the next by crossing low barriers.

e By a build in feed back mechanism trapping in some region efcin-
figurational space is excluded. Hence the algorithm doesexpiore
again and again known configurational regions but exploessnegions
iInstead.

0-74



initialize a current mninum ' Murrent’

ESCAPE TRI AL PART

MDstart: start a MDtrajectory with kinetic energy Ekinetic fromcurrent m ni num
"Meurrent’. Once potential energy reaches another mninmmalong the trajectory
stop MD and optim ze geonetry to find the closest |ocal mninum’M

If ("M equals "Murrent’) then
Ekinetic = Ekinetic*betal (betal > 1)
goto MDstart
else if ("M equals a mnimmyvisited previously) then
Eki netic = Ekinetic*beta2 (beta2 > 1)
goto MDstart
else if ("M equals a new mninum) then
Eki netic = Ekinetic*beta3d (beta3d < 1)
endi f

DOMNWARD PREFERENCE PART

if ( energy("M) - energy(’Murrent’) < Ediff ) then
accept new mnimum 'Murrent’ ='M
add "Murrent’ to history |ist
Ediff = Ediff*al phal (al phal < 1)

else if rejected
Ediff = Ediff*al pha2 (al pha2 > 1)

endi f

goto MDstart
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Significance of the Bell-Evans-Polanyi (BEP) principle for
global optimization

The BEP principle comes originally from chemistry, wherstdtes that highly
exothermic chemical reactions have a low activation eneligyhe context of
global optimization it implies that low barrier escape [gatiad on the average
Into lower local minima than high barrier escape paths. asic tendency
can be seen from the figure below where the PES along thearaathway is
represented by two parabolas. Pulling down the blue pasabl also lower
the saddle point represented by the intersection ofthe awaljwlas.
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Numerical verification of the BEP principle for a LJ cluster

The pictorial arguments put forward to establish the vatidi the BEP princi-
ple are of course approximate and it is to be expected thet Hre exceptions.
The numerical test of the validity of the BEP principle in fljgire below shows
Indeed that it can be strongly violated in certain cases aseaseen from the
strong scattering of the black crosses in the plot of adtamaenergy (barrier
height) vs the energy difference between the two conneciedhma. If one
takes however averages in this huge data set of 30 000 sadhis pne obtaind
the red line which indicates a virtually perfect validitytbie BEP principle on
average. This validity on average is sufficient in the condéglobal minimiza-

tion. 10

i

O=ia S [Ep=an un

-10

Actvaton Ermigy [Ep=an unk)
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Optimal MD trajectories

MD trajectories that start out in "soft” directions leadtes over a low energy
saddle point into another minimum

Soft directions are found by minimizing the energy of a secmmage system
under the constraint that it has a fixed distance from thd lmagamum.

Empirical correlations between the curvature along theaindirection of the
MD trajectory and the bqgarrierheight overcome by the ttajgccan be found:
Low curvature leads on average to low barriers
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Example: minima hopping for a 512 atom NaCl cluster

This cluster is well suited to illustrate how minima hoppingrks in practice.
In addition to the ground state funnel associated to theajlimiinimum which
is a 8 by 8 by 8 cube the system has other funnels which comesfmoother
orthorombic shapes such as the 7 by 8 by 9 structure shwow loglohe right.
These other orthorombic shapes can of course not be buildgtigrsince the
number of atoms does not match. The figure below on the leftstioe ener-
gies of the various minima visited during a minima hopping tagether with
the kinetic energy of the molecular dynamics trajectorygalh be seen that the
kinetic energy always increases strongly if the system apgped in a funnel
which then allows to escape from the funnel. The escape framreel can thus
be considered as some kind of melting event, whereas thensystezes when
it goes down within a funnel.
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Distribution of search lengths

All the methods for global optimization discussed in thisise are stochastic.
As a consequence the time needed to find the global minimumsvaom one
run to the next. Such a distribution of search lengths of ammarmopping run
Is shown In the figure below. In the case of minima hoppingdoam numbers
are used to generate the initial velocity vector in the makrcdynamics es-
cape step. For a single funnel system the distribution i®esptial. For an
exponential distribution one serial long search is equelfgctive as several
short parallel searches whose summed length is equal terlgénl of the serial
search. For multifunnel systems the distribution is a gupstion of several
exponential functions. In such a case several shorterlpbsabrches are more
efficient than a long serial search.

1000 ¢ T T T 1 T L T
- from high energy configuration  +
2 Xy from second lowest minimum ~ x

100 e 3% E

number of runs

10 X E

0 500 1000 1500 2000 2500 3000 3500 4000
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The BigDFT software package

Solves the many-electron Sdainger equation in the Kohn-Sham density func-
tional approximation using a wavelet basis

This basis set combines the advantages of

Plane waves:

e Systematic, orthogonal basis set

e Localization in Fourier space allows for efficient precdimaiing tech-
niques.

Gaussians:

e Localized in real space: well suited for molecules and otipem struc-
tures.

e Adaptivity
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High order Daubechies wavelets are used to represent wastafns

LEAST ASYMMETRIC DAUBECHIES-16
1.5 T I T

| |
scaling function
wavelet -------

0.5 [
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Application of minima hopping to the formation of Cgg

Visualization at: http://www.unibas.ch/comphys/comgtaygif
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Application of dual minima hopping to metal doped silicon
clusters

Fullerene like endohedrally doped&cages are only metastable configurations
but not the ground state

Fullerene ground state
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The ground state ofBgg

SzwackiBgg fullerene Bso ground state
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Disconnectivity graphs for the Awg cluster
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(111) surface reconstruction of boron leads to sheets
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Application of minima hopping to alanates

Ground state is polymer like

NaAlH,, C2/m phase KAIH,, P-1 phase

0000090

Mg(AIH,),, P2, phase Ca(AH,),, P2 /c phase Sr(AlH,),, Pm phase
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Application of minima hopping to protein folding
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Low energy crystaline structures of silicon

Many crystalline structures exist within a small energemaal
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Quantifying similarities between structures

Quantifying similarities between structures is requirethany contexts in atom-
Istic simulations. The most elementary question is whetwerstructures are
iIdentical or not. This question is far more complicated tbar might think.
Even if two structures are absolutely identical one stmactuill in most cases
be rotated and translated with respect to the other one. aFgern system it is
In such a case in general impossible to detect by eye whdtaettuctures are
identical or not. In addition the two structures are in gahaot absolutely
iIdentical but only nearly identical because of the presaricwise coming ei-
ther from an experiment or a simulation. In the case of expent, two identi-
cal structures can for instance be measured by two diffesgaerimental setups
which will lead to slightly different results. In the casesofomputer simulation
we have learned that a geometry optimization is stoppeae ifdrce norm is be-
low a certain non-zero threshold. Therefore the structaremever perfectly
relaxed and two structures that would become identicalafrélaxation was
continued until the forces are really zero, will in practhoe slightly different.
Quantifying similarities in terms of a distance is also vemportant for various
classification methods such as clustering. In an clustermgess on puts to-
gether similar structure that have a small configuratiorsthdce amomg each
other into a so-called cluster.
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Properties of a metric
It is natural to characterize the dissimilarity between stroicturesp andq by

a real numbed(p,q) > 0. In order to give meaningful result§ p,q) should
satisfy the properties of a metric, namely

e coincidence axiomd(p,q) =0ifand only ifp=q,
e symmetry:d(p,q) = d(q,p),
e triangle inequalityd(p,q) +d(q,r) > d(p,r).

The coincidence axiom ensures that two configuratiprad g are identical
If their distance is zero. The triangle inequality is essdrior clustering al-
gorithms. If it is not satisfied, then it could happen that afguration that
IS within one cluster is also part of another cluster evenugiimothe distance
between the two clusters is very large in configuration space
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The RMSD

A configuration ofn atoms is represented By= (r1,r5,...,rn) € R®", where
the column vector; represents the Cartesian coordinates of atoifhe root
mean square deviation (RMSD), a distance based on the shrgidenius norm,

n 1/2
P_ pUj| — P_ 92
I1RP =R = (3 1P = fI?) (32)

can not be used to compare two configurations p and g, bedaaset invari-
ant with respect to translations or rotations of one conéiion relative to the
other. For this reason the commonly used root-mean-squstaande (RMSD)
Is defined as the minimum Frobenius distance over all traosgand rotations.
By minimizing S ||»° 4 d — r;'||? with respect to the translation vectdrone
obtainsy'(r” +d —r') = 0. Therefore we will assume in the following that
all ri are measured with respect to the centroids of the corregspgprdnfigu-
ration which allows us to drop the minimization with resp&cthe translation
d. Then, finding the rotatioty around the common centroid which minimizes

1 .
RMSD(p,q) = ﬁmUmllRp—URqH (33)

IS a local minimization problem and hence we denote thiseemsf the RMSD

by RMSD. The use of quaternions allows to find the optimal rotatiosingle
step extremely rapidly.
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Quaternions

A quaternionQ = (Qp, Q1, Q2, Q3) is an extension of the idea of complex num-
bers to one real@) and three imaginary parts. According to the Euler’s rota-
tion theorem, a rotation in space which keeps one point ondicebody (cen-
troid in our case) fixed, can be represented by four real nusnlmne for the
rotation angle and three for the rotation axis (we assumntéttieacenter of rota-
tion is on the origin). A unit quaternion, i.8Q||* = Q¢ + Qf + QF + Q2 =1,
can conveniently represent this axis-angle pair as

Q= (cos(%),ﬂsin(%))

where® is the rotation angle around the unit agis= ai + bj + ck. The corre-
sponding orthogonal rotation matrix is

(B+ R -Y - 2Q@-2QQs 2B +2QQ
U=| 2QQ+2Q0Q G- X+E-& 20L-2QQ |.
21 —2QQ 2QB+2QQ F-X-L+Q4

Assume thatil is the 3x 3 equivalence of the rotation operatonn Eqg. 33. The
optimum rotation? which minimizes RMSD, indeed maximizes the correla-
tion betweenRP and RY, i.e. the atomic Cartesian coordinates with respect to
the common center of mass. Based on gquaternions, the optithisygiven by
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Q which is identical to the principal eigenvector of the 4 symmetric, trace-

less matrix
_RXX"i_ Ryy‘|‘ ﬂzz Kyz— Rzy sz— sz
g | R Ry R Ry—Re  Reyt Ryx
Rzx— Ryz Ry + Ryx —Ryx + Ryy — Rez
ny — Ryx RXZ‘F sz Ky2‘|‘ Rzy

Ry — Ryx
Rz + Rex
Ryz+ Ray
—Rux— Ryy + Rzz_

whereR_is the correlation matrix whose elements are giveriy= 5" xy!'.

Note that, without applying/ on RY, Eqg. (33) is given by

1
RMSO(p,q) = \/ﬁ (HRpHZ+ HRQHZ—ZA*)

whereA* is the largest eigenvalue of.
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Globally minimized RMSD

The RMSD is however not invariant under index permutations of chaihic
iIdentical atoms. If the configuratiop and g are identical, Eq. (33) will be
different from zero if we permute for instance kY the positionsnq andr? of
atomsi and . This is important since for instance during molecular agits
or a geometry optimization, atoms may be flipped. The mininkrobenius
distance obtained by considering all possible index peatrarts for an arbitrary
rotationU is

1
RMS = —min||RP - URYP 34
Dr(p.@) = = min| I (34)
P being ann x n permutation matrix. This assignment problem is solved in
polynomial time using the so-called Hungarian algorithmowdver, what is
really needed is a solution of the combined problem of theglminimization
over all rotations and permutations, namely

RMSOp,q) = m|n||Rp URYP||. (35)

\f

The global minimum RMSD fulfills all the properties of a metriThe coin-
cidence and symmetry properties are easy to see. Usingaheast triangle
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Inequality, the proof of the triangle property is as follows

RMSOp,q) + RMSKq,r)

1 1
\/ﬁmllr}HUR R ||+\/ﬁ mllr}HR UR'P|
1 1

— — |NUpaRPPhy— RY — |RA9—-U4R P
/n pq Pq ||+\/ﬁ|| rq qll
1

> UpqRP Pog— R+ R — UqR' Py

1
> —nHRp— Urp R Prp|

= RMSOp,r)
wherer(i]mURpP — RY|| is denoted by||UpqRPPpq— RY||. In some appli-

cations,’ one might apply restrictions to the permutation®nder to reduce
the size of the permutation space. For instance, in an alicto organic
molecules only equivalent atoms have to be permuted. Egmivatoms in
an organic molecule are considered for example those thatilantical con-
nectives. Finding the globally minimized RMSD is in prin@mgain a global

optimization problem. In practice it can be solved for nat targe system by
Monte Carlo methods.

0-99



Fingerprints

The fact that finding the globally minimized RMSD is a numalig costly
global optimization problem calls for metrics that are gdeyato calculate.
Quantities that allow to characterize a structure are fatjy called finger-
prints. If distances can be calculated betwenn two such ripnogs, they can
be an alternative to the RMSD. As consequence a very largédauai finger-
prints describing a structure way have been proposed. Mahgse fingerprint
are based on interatomic distances. It turns out that itateria distances alone
do not give optimal fingerprints. In some cases interatormstadces can not
even uniquely characterize a structure. Two distinct stines with identical
Interatomic distances are called homo-metric and an examghown below.
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Fingerprints based on eigenvalues of symmetric matrices

We consider symmetriM x M matrices whose elements depend only on the
interatomic distances; = ||ri —rj|| of an N-atom configuration. Vector¥
containing eigenvalues of such a matrix form a configuratidingerprint that
allows to identify a structure. The normalized Euclideastaince

_ 1 p q
Ay (p,q) \/NIIV VA (36)
measures the dissimilarly between p and g with no need taisupese them.
A simple example of such a matric is the contact maiiXdts matrix element
Ci,j Is 1 if the distance between atomand | Is less than the sum of the co-
valents radii plus some margin and zero otherwise. Diageleshents can be
set to zero. The matrix elements of this matrix change distoously if bonds
are stretched by more than the margin. Therefore some smoatiff function

—(r-—r:\2
is more appropriate like for instan€ ; = exp(— (é_r'wr_‘gz . As a consequence
170

the eigenvalues of this function will then also vary smogtiAlhe N eigenval-
ues of such a smootN x N contact matrix will however not be sufficient to
characterize the structure in a unigue way, since there ldre @ degress of
freedom. It can be shown that for any matrix of dimendwbtess than Bl — 6
there exists a subspace of at least dimenslen3N + 6 where all the structures
have the same fingerprint. For a unique characterisationave therefore to
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find a matrix whose dimension is larger thaN 3 6. One possible matrix of
this type is a overlap matrix, familiar form quantum mecisahicalculations,
where one has one s and 3 p-type atomic orbitals per atom.idmwty one
obtains fingerprint vectors of lengtN4which are long enough to character-
Ize the structure in a unique way. Other possibilities aeedigenvalues of the
Kohn-Sham Hamiltonian or the eigenvalues of the Hessiamixnat
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